DOI: https://dx.doi.org/10.18203/2320-1770.ijrcog20242467

Original Research Article

Effects of raloxifene use on cardiovascular disease risk determinants in postmenopausal women

Banu Ciftci*, Haldun Guner

Department of Obstetrics and Gynecology, Private Clinic, Istanbul, Turkey

Received: 20 July 2024 Accepted: 14 August 2024

*Correspondence:

Dr. Banu Ciftci,

E-mail: drbanuciftci@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Background: Raloxifene is a selective estrogen receptor modulator (SERM) that binds to estrogen receptors with high affinity, acting as an estrogen agonist or antagonist in a tissue-specific manner. This study aimed to evaluate the effect of raloxifene on various cardiovascular risk determinants in postmenopausal women and to compare these effects with those in a control group.

Methods: The study was conducted as a prospective, open, matched case-control study at Gazi University Hospital. A total of 100 postmenopausal women were included. Fifty postmenopausal women with osteoporosis received 60 mg of raloxifene daily. The other fifty healthy postmenopausal women in the control group received no treatment. After one year, changes in cardiovascular risk markers compared to baseline values were evaluated in both the treatment and control groups. The plasma determinants evaluated included total cholesterol, LDL, HDL, triglycerides, lipoprotein (a), Apo A, Apo B, homocysteine, hs-CRP, and fibrinogen. Carotid intima-media thickness, an important radiologic indicator of cardiovascular risk, was also measured and compared between the groups.

Results: After the study, raloxifene was found to decrease levels of total cholesterol, LDL, homocysteine, and fibrinogen, but it did not affect HDL, triglyceride, Apo B, lipoprotein (a), and hs-CRP levels. There were no differences between the baseline values of the groups or the values of the control group after the study period. In the control group, there was a significant increase in carotid intima-media thickness compared to baseline values, while no such difference was observed in the raloxifene group.

Conclusions: Raloxifene caused favorable changes in many biochemical and radiologic cardiovascular risk determinants compared to the control group. Further clinical studies are needed to determine whether these effects are associated with cardiovascular protection.

Keywords: Cardiovascular disease, Menopause, Postmenopausal, Raloxifene

INTRODUCTION

In the early twentieth century, women's lifespans rarely extended beyond menopause. Today, however, one-third of a woman's lifespan consists of the postmenopausal period. Therefore, the quality of life during this time has become a very important and justified expectation. ^{1,2} The main problems that postmenopausal women face during this period include cardiovascular disease (CVD), osteoporosis, loss of cognitive function, urogenital atrophy, and malignancies. ³ Cardiovascular disease

(CVD) is the leading cause of death in our country, as it is worldwide.⁴ The fact that this disease, which is less common in women than in men during the premenopausal period, approaches similar rates with men after menopause suggests that estrogen has a protective effect before menopause.⁵

The concept of hormone replacement therapy (HRT), which holds great promise for addressing all these menopausal problems, emerged in the 1970s based on observational studies.⁶ It wasn't until the 2000s that

randomized controlled trials on this subject were concluded, sparking significant controversy. At the time of this study, the consensus was that hormone replacement therapy (HRT) should not be used for primary or secondary prevention of cardiovascular disease (CVD). Its primary indication was for treating vasomotor and urogenital atrophic symptoms, with treatment recommended for the shortest duration and lowest effective dose. 8,9

These results have prompted the medical community to explore various treatment alternatives. The ideal agent would ideally harness the beneficial effects of estrogen on bone, arteries, and the brain, while mitigating its undesirable effects on the breast and endometrium. This concept sparked significant interest in 1998 with the advancement of selective estrogen receptor modulators (SERMs) from the laboratory to pharmaceutical development. 10,11

SERMs are synthetic, non-steroidal agents that bind strongly to estrogen receptors, acting either as agonists or antagonists depending on the target tissue. Those approved for human use are tamoxifen, toremifene, clomiphene and raloxifene. Tamoxifen is a SERM indicated for the treatment and prevention of breast cancer; toremifene for the treatment of breast cancer; clomiphene for the treatment of infertility; raloxifene for the treatment and prevention of postmenopausal osteoporosis. The potential cardioprotective effect of raloxifene, initially discovered through extensive osteoporosis studies, has prompted the scientific community to conduct research focusing on cardiovascular disease as a primary outcome.

The aim of this study was to evaluate the impact of raloxifene on various cardiovascular risk factors known to be crucial in the development of cardiovascular disease (CVD) in postmenopausal women. We examined serum lipids and lipoproteins including total cholesterol (TC), LDL, HDL, triglycerides (TG), Apo A, Apo B, and Lp (a) to assess dyslipidemia, which plays a significant role in the atherosclerotic process. Inflammatory markers such as hs-CRP were also analyzed, along with fibrinogen as a hemostatic factor. Carotid intima-media thickness (IMT) was evaluated as a radiological indicator of homocysteine and coronary atherosclerosis.

METHODS

The study was conducted from January 2002 to January 2005 at Gazi University Faculty of Medicine, Department of Obstetrics and Gynecology, with the support of the Department of Biochemistry and the Department of Radiology. It was designed as a prospective, matched case-control study. Fifty women who visited the menopause outpatient clinic were selected for the study group and started on raloxifene hydrochloride treatment due to a diagnosis of postmenopausal osteoporosis. Concurrently, 50 healthy postmenopausal women attending the same

clinic were included as the control group. The study protocol received approval from the ethics committee (Ethics Committee Approval No: **, Date: **). All participants provided written informed consent in accordance with the ethical principles outlined in the Declaration of Helsinki.

Before starting treatment, all women underwent a gynecological examination, PAP smear, transvaginal ultrasound (USG), breast examination, mammography, bone mineral density (BMD) measurement using dualenergy X-ray absorptiometry (DEXA), as well as assessments of blood pressure, body mass index (BMI), liver function, kidney function, thyroid function, and a complete blood count. Women with systemic diseases that may affect cardiovascular disease risk (such as type 2 diabetes, hypertension, familial dyslipidemia, obesity), smokers, those with known cardiovascular disease, and those using hormone replacement therapy (HRT), tibolone, antiresorptive agents, statins, or antihypertensive medications in the past year were excluded from the study. Additionally, women with a history or suspicion of gynecologic malignancy, endometrial thickness >4 mm, history of thromboembolic disease, cerebrovascular disease, amenorrhea for less than 2 years, or vasomotor symptoms were also excluded.

Although raloxifene has been used in the literature for treating and preventing osteoporosis, its use in Turkey is approved only for osteoporosis treatment by the Ministry of Health. Therefore, the study group started on raloxifene consisted of women classified as osteoporotic according to World Health Organization (WHO) criteria (bone mineral density T score at the femoral neck or lumbar vertebrae ≤ -2.5). Is Since it would be unethical to withhold medication from osteoporotic patients, the control group consisted of women with normal BMD measurements (bone mineral density T score at the femoral neck or lumbar vertebrae >-1)

The study group used raloxifene hydrochloride, 1*1 tablet (60 mg) at any time of the day. In contrast, the control group received recommendations for exercise and a calcium-rich diet. All women underwent biochemical and radiological evaluations before and 12 months after the study. TC, LDL, HDL, TG, Lp (a), Apo A, Apo B, homocysteine, hs-CRP and fibrinogen were analyzed. Carotid IMT was measured before and 1 year after the study.

Serum TC, HDL and triglyceride levels were measured enzymatically with an autoanalyzer (ABBOTT, Aeroset System). LDL level was calculated by the Friedewald formula (TC- triglyceride /5- HDL). Apo A, Apo B and Lp (a) were determined by immunonephelometric method (Beckman, immage). Homocysteine was determined by HPLC (high-performance liquid chromatography system, Chronosystems, Munich, Germany). Fibrinogen was determined by Clauss clotting technique. hs-CRP was

determined by immunonephelometric method (Beckman, immage).

B-mode ultrasound (USG) was used to measure carotid intima-media thickness (IMT). Patients were positioned supine with their head turned opposite to the side being measured and extended. Carotid IMT was defined as the distance between the anterior edge of the luminal echo and the anterior edge of the media/adventitia echo. Measurements were taken at the common carotid artery, 10 mm proximal to the carotid bulb, and the mean of five measurements was recorded. Results are reported as mean \pm SD in centimeters. ¹⁷ Logic 7 (GE, Milwaukee, WI) USG system and 7-10 MHz linear transducer were used.

Statistical analyses were conducted using the t-test and chi-square test in the SPSS software (Version 1.0, Inc., Chicago, IL, USA). Pre- and post-study values within each group were analyzed using paired t-tests for dependent groups, while between-group comparisons were analyzed

using independent t-tests for independent groups. A significance level of p<0.05 was considered statistically significant.

RESULTS

Descriptive patient characteristics

Table 1 shows the descriptive characteristics of the patients in both the study and control groups before the study. The study included 100 women aged 45-79 years (mean age 58.91±7.09 years). The duration of postmenopausal status ranged from 2 to 32 years (mean 11.25±6.32 years). There were no statistically significant differences between the groups in terms of age, years since menopause, type of menopause, BMI, blood pressure, or exercise status. All patients were non-smokers and did not consume alcohol. These characteristics ensured a precise matching between the study and control groups.

Table 1: Descriptive patient characteristics of the patients who participated in the study.

Parameters		Study group (n=50)	Control group (n=50)	P value
Age (year)		59.56±7.06	58.26±7.14	0.362
Postmenopausal period (year)		11.20±6.23	11.30±6.47	0.937
Menopause type (%)	Natural	86	84	1.000
	Surgical	14	16	
BMI (kg/m²)		25.2±3.1	24.8±1.9	0.420
Blood pressure	Systolic (mmHg)	127±16	126±18	0.460
	Diastolic (mmHg)	78±10	81±9	0.684
Exercise per week (n)		3.2±2.5	4.1±1.7	0.735

Table 2: Changes in examined cholesterol profile values of groups (Mean±SD).

Parameters		Baseline	1 year after treatment	P value
Total cholesterol (mg/dl)	Case	221.64±34.21	199.98±29.50	>0.001
Total cholesterol (mg/th)	Control	217.62±36.33	219.34±38.50	0.775
LDL cholesterol (mg/dl)	Case	135.84±29.98	121.98±26.36	0.001
	Control	133.96±33.71	130.12±34.16	0.457
HDL cholesterol (mg/dl)	Case	63.26±12.73	62.60±12.04	0.590
	Control	61.86±14.52	59.94±14.98	0.174
Triglyceride (mg/dl)	Case	115.86±63.48	117.02±49.02	0.906
	Control	121.88±63.80	134.00±65.65	0.133
Lipoprotein(a) (mg/dl)	Case	24.71±25.02	26.46±30.50	0.550
	Control	33.56±26.28	30.04±30.13	0.381
Apo A (mg/dl)	Case	124.26±24.44	140.63±47.79	0.009
	Control	135.34±26.12	141.98±44.53	0.346
Apo B (mg/dl)	Case	108.72±24.48	105.70±26.55	0.418
Apo B (mg/m)	Control	116.18±24.19	109.06±30.16	0.136
Homocysteine (umol/l)	Case	12.07±3.50	10.82±2.74	0.042
Homocysteine (umoi/i)	Control	12.01±2.84	11.47±3.81	0.417
ha CDD (ma/dl)	Case	0.39 ± 0.44	0.34±0.35	0.473
hs-CRP (mg/dl)	Control	0.40 ± 0.45	0.27 ± 0.22	0.106
Fibringen (mg/dl)	Case	202.00±110.71	161.58±90.89	0.031
Fibrinogen (mg/dl)	Control	257.41±192.42	209.67±128.95	0.131
Canatid IMT (am)	Case	0.80±0.39	0.86 ± 0.43	0.161
Carotid IMT (cm)	Control	0.72±0.11	0.76±0.13	0.045

Table 2 presents the laboratory and measurement results of both groups at baseline and after 1 year.

Laboratory results

There was no statistical difference between the baseline values of lipids and lipoproteins, but there was a significant decrease in TC (p=0.000), LDL (p=0.001) and increase in Apo A (p=0.009) at the end of the first year in raloxifene-treated patients. HDL (p=0.590), Apo B (p=0.418), Lp (a) (p=0.550) and triglycerides (p=0.906) did not change. In the control group, no statistically significant change was observed in any lipid and lipoprotein compared to baseline (Figure 1). In homocysteine evaluation, there was no difference between baseline values, and the significant decrease in the raloxifene group (p=0.042) was not observed in the control group (p=0.417) after 1 year of use (Figure 2). There were no intra- and inter-group differences in hs-CRP at baseline and at the end of the first year (Figure 2).

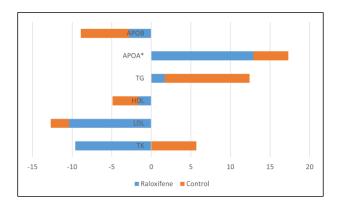


Figure 1: Changes in lipids and lipoproteins in the study group and control group.

*p<0.05 (significant according to baseline value)

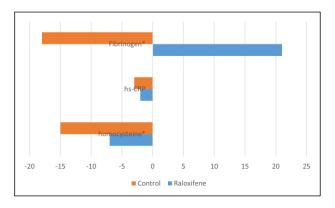


Figure 2: Fibrinogen, hs-CRP and homocysteine changes in the study group and control group.

*p<0.05 (significant according to baseline value)

There was a significant decrease in fibrinogen level in the raloxifene group after 1 year of use (p:0.031). There was no significant difference between baseline values (p:0.383) and in the control group (p:0.131) (Figure 2).

USG measurement

The ultrasound examination of IMT showed no difference between the groups before treatment (p=0.391). However, a statistically significant increase was observed in the control group after 1 year (p=0.045), while no significant change was found in the raloxifene group after 1 year (p=0.161).

DISCUSSION

Based on the results of our study, raloxifene at a daily dose of 60 mg had a positive impact on the serum lipid profile and other significant intermediate determinants of CVD. These results align well with previous research. 18-20

Clinical trials have demonstrated that raloxifene reduces TC and LDL by 8-12%, with this effect starting in the third month and persisting for 4 years. ^{18,20,21} In our study, raloxifene led to a significant decrease in total cholesterol (TC) and LDL levels after 1 year, whereas these levels remained unchanged in the control group with similar baseline values. This effect is believed to be linked to raloxifene's mechanism of inhibiting LDL oxidation in vitro. ²² Studies examining the impact of raloxifene on HDL levels report varying results. While the Euralox (European Raloxifene Trial) study found a significant increase in HDL; the MORE study and studies by Walsh et al and Delmas et al did not observe statistically significant changes. ^{20,21} Similar to these two studies, no change was found in HDL in our study.

The effects of raloxifene on TG are controversial. Nickelsen et al reported a decreasing effect on TG levels, while Walsh et al. suggested no significant change in TG levels.²⁰ In our study, we observed a slight increase that was not statistically significant, similar to the results of the MORE study.¹⁸ Studies have indicated that raloxifene reduces Lp (a), although not to the extent seen with hormone replacement therapy (HRT), Mijatovic et al even reported a decrease of up to 30% with a dose of 150 mg raloxifene. ^{23,24} However, the effect of raloxifene on Lp (a) was not significant in our study. We speculate that the 60 mg dose used in our study may be lower compared to other studies we reviewed. It is well-established that serum concentrations of Apo B and Apo A are important determinants of CVD.25 Walsh et al found an increase in Apo A and a decrease in Apo B in women using raloxifene.²⁰ Similarly, we observed a significant increase in Apo A levels in our study, whereas the slight decrease in Apo B was not statistically significant. Consistent with other studies, we also noted a significant reduction in fibrinogen levels, which we investigated as a hemostatic factor playing a crucial role in atherogenesis.²⁴ Similar to the study by Cushman et al which was widely reported in the literature, HRT was found to increase hs-CRP.26 However, we did not observe a significant change in hs-CRP levels in our study, which aligns with the results of Walsh et al.20

IMT is considered an indicator of carotid wall structure and is an important marker of atherosclerosis. ²⁷ CVD and carotid IMT have been shown to be closely related. ²⁸ In the literature, studies of HRT with carotid IMT have yielded different results. ^{29,30} In our study, compared to the control group with similar baseline values, an increase was observed in carotid IMT after 1 year in the control group, whereas this increase was not observed in the raloxifene group. These results suggest that the increase observed in the control group may be attributed to aging, while raloxifene prevented this increase. Furthermore, the exclusion of factors such as hypertension, obesity, diabetes, and smoking, which affect carotid IMT, is crucial in demonstrating the specific effect of raloxifene.

The literature indicates that raloxifene influences risk factors associated with atherosclerotic disease. In our study, multiple known determinants were simultaneously assessed in both the patient and control groups, while other significant risk factors were excluded through precise matching. The absence of statistical differences between the groups in any of the baseline determinants greatly enhanced this matching. Consequently, raloxifene is believed to exhibit multiple anti-atherogenic effects. 31-33

Raloxifene reduces total cholesterol (TC), LDL, and homocysteine levels similar to hormone replacement therapy (HRT), but unlike HRT, it does not lead to an increase in triglycerides (TG) and hs-CRP. Moreover, it's worth noting that HRT) does not exhibit a beneficial effect on HDL levels. Numerous clinical studies have demonstrated that raloxifene also influences risk factors associated with atherosclerotic disease. In our study, multiple well-known determinants were simultaneously assessed in both the patient and control groups, and other significant risk factors were excluded through precise matching. The absence of statistical differences between the groups in any of the baseline determinants greatly contributed to this matching.

This study has few limitations. Although the study design was prospective, it was not randomized and was an openlabel study. Additionally, one reason for not administering any medication in the control group is the recognition of the powerful placebo effect.

CONCLUSION

Although the effect of raloxifene on the venous system is generally similar to that of HRT, based on clinical data and our study results, it can be inferred that raloxifene has a neutral or slightly positive effect on the arterial system and, consequently, on atherosclerotic events. In the postmenopausal period, the desired pharmacological effects should include corticosteroids that suppress the immune system without inducing bone loss, androgens with anabolic effects that do not cause masculinization or worsen lipid profiles, progestins that induce endometrial atrophy without causing fluid retention, and medications that increase mineral density without leading to

hypercalcemia. Randomized controlled studies on these topics are needed.

Funding: No funding sources Conflict of interest: None declared

Ethical approval: The study was approved by the

Institutional Ethics Committee

REFERENCES

- Kinci MF, Sezgin B, Arslaner MO, Akin Gökbel D, Gökbel İ, Sivaslioğlu AA. Anatomical and symptomatic outcomes in patients with Le Fort colpocleisis with or without hysterectomy. BMC Women's Health. 2022;22(1):286.
- 2. Brzozowska M, Lewiński A. Changes of androgens levels in menopausal women. Menopause Review/Przegląd Menopauz. 2020;19(4):151-154.
- 3. Bugra C, Burcin SO, Burcu K, Bora C, Ferdi KM, Eser C, et al. Is presence time of dermoid cysts a risk factor for malignancy potential in advanced age? Int J Gerontol. 2019;13:335-8.
- 4. Rosano G, Vitale C, Marazzi G, Volterrani M. Menopause and cardiovascular disease: the evidence. Climacteric. 2007;10(sup1):19-24.
- Muka T, Oliver-Williams C, Colpani V, Kunutsor S, Chowdhury S, Chowdhury R, et al. Association of vasomotor and other menopausal symptoms with risk of cardiovascular disease: a systematic review and meta-analysis. PloS one. 2016;11(6):e0157417.
- 6. Barrett-Connor E, Grady D, Stefanick ML. The rise and fall of menopausal hormone therapy. Annu. Rev. Public Health. 2005;26(1):115-140.
- 7. Pinkerton JV. Hormone therapy for postmenopausal women. N Engl J Medi. 2020;382(5):446-455.
- 8. Lobo RA, Pickar JH, Stevenson JC, Mack WJ, Hodis HN. Back to the future: hormone replacement therapy as part of a prevention strategy for women at the onset of menopause. Atherosclerosis. 2016;254:282-90.
- 9. Bachmann GA. Vasomotor flushes in menopausal women. Am J Obstetr Gynecol. 1999;180(3):S312-6.
- 10. Pinkerton JV, Thomas S. Use of SERMs for treatment in postmenopausal women. J Steroid Biochem Molecul Biol. 2014;142:142-154.
- 11. Bolognese MA. SERMs and SERMs with estrogen for postmenopausal osteoporosis. Revi Endocri Metabol Disord. 2010;11(4):253-9.
- 12. Lello S, Capozzi A, Scambia G. Is there still a role for SERMs in menopause management?. Gynecol Endocrinol. 2020;36(7):567-8.
- 13. Howell A. Tamoxifen versus the newer SERMs: what is the evidence? Ann Oncol. 2000;11:255-66.
- 14. Hansdóttir H. Raloxifene for older women: a review of the literature. Clin intervent Agi. 2008;3(1):45-50.
- 15. World Health Organization. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: report of a WHO study group [meeting held in Rome from 22 to 25 June 1992], 1994. Available at:

- https://iris.who.int/handle/10665/39142. Accessed on 01 March 2024.
- 16. Bodur S, Dundar O, Kanat-Pektas M, Kinci MF, Tutuncu L. The effects of different therapeutic modalities on cardiovascular risk factors in women with polycystic ovary syndrome: a randomized controlled study. Taiwan J Obstetr Gynecol. 2018;57(3):411-6.
- Santhiyakumari N, Madheswaran M. Extraction of intima-media layer of arteria-carotis and evaluation of its thickness using active contour approach. In2007 International Conference on Intelligent and Advanced Systems 2007 Nov 25. IEEE. 2007;582-586.
- 18. Barrett-Connor E, Grady D, Sashegyi A, Anderson PW, Cox DA, Hoszowski K, et al. Raloxifene and cardiovascular events in osteoporotic postmenopausal women: four-year results from the MORE (Multiple Outcomes of Raloxifene Evaluation) randomized trial. Jama. 2002;287(7):847-57.
- Walsh BW, Kuller LH, Wild RA, Paul S, Farmer M, Lawrence JB, et al. Effects of raloxifene on serum lipids and coagulation factors in healthy postmenopausal women. Jama. 1998;279(18):1445-51.
- 20. Walsh BW, Paul S, Wild RA, Dean RA, Tracy RP, Cox DA, et al. The effects of hormone replacement therapy and raloxifene on C-reactive protein and homocysteine in healthy postmenopausal women: a randomized, controlled trial. J Clin Endocrinol Metabol. 2000;85(1):214-8.
- 21. Delmas PD, Bjarnason NH, Mitlak BH, Ravoux AC, Shah AS, Huster WJ, et al. Effects of raloxifene on bone mineral density, serum cholesterol concentrations, and uterine endometrium in postmenopausal women. N Engl J Med. 1997;337(23):1641-7.
- 22. Zuckerman SH, Bryan N. Inhibition of LDL oxidation and myeloperoxidase dependent tyrosyl radical formation by the selective estrogen receptor modulator raloxifene (LY139481 HCL). Atherosclerosis. 1996;126(1):65-75.
- 23. Smolders RG, Vogelvang TE, Mijatovic V, van Baal WM, Neele SJ, Netelenbos JC, et al. A 2-year, randomized, comparative, placebo-controlled study on the effects of raloxifene on lipoprotein (a) and homocysteine. Maturitas. 2002;41(2):105-114.
- 24. Mijatovic V, van der Mooren MJ, Kenemans P, de Valk-de Roo GW, Netelenbos C. Raloxifene lowers serum lipoprotein (A) in healthy postmenopausal women: a randomized, double-blind, placebocontrolled comparison with conjugated equine estrogens. Menopause. 1999;6(2):134-7.

- 25. Reinhart RA, Gani K, Arndt MR, Broste SK. Apolipoproteins AI and B as predictors of angiographically defined coronary artery disease. Arch Int Medi. 1990;150(8):1629-33.
- Cushman M, Meilahn EN, Psaty BM, Kuller LH, Dobs AS, Tracy RP. Hormone replacement therapy, inflammation, and hemostasis in elderly women. Arterioscl Thrombos Vasc Biol. 1999;19(4):893-9.
- Crouse J, Thompson C. An evaluation of methods for imaging and quantifying coronary and carotid lumen stenosis and atherosclerosis. Circulation. 1993;87(3 Suppl):II17-33.
- 28. Poli A, Tremoli E, Colombo A, Sirtori M, Pignoli P, Paoletti R. Ultrasonographic measurement of the common carotid artery wall thickness in hypercholesterolemic patients A new model for the quantitation and follow-up of preclinical atherosclerosis in living human subjects. Atheroscl. 1988;70(3):253-261.
- 29. de Kleijn MJ, Bots ML, Bak AA, Westendorp IC, Planellas J, Bennink HJ, et al. Hormone replacement therapy in perimenopausal women and 2-year change of carotid intima-media thickness. Maturitas. 1999;32(3):195-204.
- 30. Espeland MA, Applegate W, Furberg CD, Lefkowitz D, Rice L, Hunninghake D, et al. Estrogen replacement therapy and progression of intimal-medial thickness in the carotid arteries of postmenopausal women. Ame J Epidemiol. 1995;142(10):1011-9.
- 31. Grodstein F, Stampfer M. The epidemiology of coronary heart disease and estrogen replacement in postmenopausal women. Progr Cardiovas Dis. 1995;38(3):199-210.
- 32. Kauffman RF, Bensch WR, Bean JS. Effects of estrogen and raloxifene, a selective estrogen receptor modulator, in animal models of vascular injury. Estrogen and the vessel wall: CRC Press; 1998:207-217.
- 33. Mijatovic V, Netelenbos C, van der Mooren MJ, de Valk-de Roo GW, Jakobs C, Kenemans P. Randomized, double-blind, placebo-controlled study of the effects of raloxifene and conjugated equine estrogen on plasma homocysteine levels in healthy postmenopausal women. Fertil Steril. 1998;70(6):1085-9.

Cite this article as: Ciftci B, Guner H. Effects of raloxifene use on cardiovascular disease risk determinants in postmenopausal women. Int J Reprod Contracept Obstet Gynecol 2024;13:2235-40.