pISSN 2320-1770 | eISSN 2320-1789

DOI: https://dx.doi.org/10.18203/2320-1770.ijrcog20251231

# **Original Research Article**

# Study on caesarean section rate using Robsons ten group classification system and its implications- a retrospective analysis from a medical college in the union territory of Puducherry

Sukanya K.\*, Nirmala Jaget, Sindhujha Sekar, Hiremath P. B.

Department of Obstetrics and Gynecology, Sri Venkateshwaraa Medical College Hospital and Research Centre, Puducherry, India

Received: 02 March 2025 Revised: 04 April 2025 Accepted: 05 April 2025

# \*Correspondence:

Dr. Sukanya K.,

E-mail: sukanyaog92@gmail.com

**Copyright:** © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

#### **ABSTRACT**

**Background:** Caesarean section is one of the major surgeries in obstetrics and it helps in preventing various complications and difficult labour ensuring the safety of both mother and baby. The aim of the study was to analyse the rate and various indication of caesarean section in our hospital and to analyse it using RTGCS.

**Methods:** Retrospective data collected from hospital records in the department of obstetrics and gynecology of SVMCH, Puducherry from January 2021 till January 2024 have been taken and analysed to study the various indications of caesarean section and to classify them according to RTGCS.

**Results:** Out of 2022 deliveries conducted during the study period, 984 (48.6%) were caesarean section. The most common indication of CS was previous LSCS (35.6%), belongs to group- 5 of RTGCS followed by fetal distress (20.5%). Other common indications were failed induction (7.4%), breech (4.3), IVF/twin (5.8%). 6% of women underwent preterm CS (group 10 of RTGCS). Around 1% of the women underwent CS for malposition/malpresentation and maternal request.

**Conclusions:** In our study, the rate of caesarean section is higher compared to WHO recommendation. Caesarean section if performed when needed utmost in case of obstetrics risks and emergencies may reduce the rate of CS. Trial of labour can be considered for women with previous CS who were the major contribution for repeat CS. Proper counselling and education to the mother may help in reducing the fear and anxiety about normal vaginal delivery, thus reduces the rate of other non-obstetrics indication like maternal request.

Keywords: Fetal distress, Indications of caesarean section, Previous CS, Robsons classification

# INTRODUCTION

Caesarean section is one of the most commonly performed major surgeries in obstetrics. It is recommended when vaginal delivery might cause risks to maternal and fetal well-being, thus it helps in reducing the maternal and perinatal mortality. Even though, it is one of the most important surgical procedures that can save life of both mother and baby, the rise in rate of caesarean section in the last few years has become an alarm and a major topic of

interest in obstetrics world. WHO recommends that rate of caesarean section should be between 10-15% for optimal maternal and neonatal outcomes. It also states that there is no additional health benefit if the rate goes above 10-15%. WHO has proposed Robson's ten group classification (RTGCS) as a global standard for analysing various indications for CS in 2015. This classification is based on five obstetrics characteristics like parity, number of fetus, previous CS, onset of labour, gestational age and fetal presentation (Table 1).

Table 1: Robsons ten group classification system for caesarean section by World Health Organization.

| Group | Category                                                                  |  |  |
|-------|---------------------------------------------------------------------------|--|--|
| 1     | Nulliparous, single, cephalic, >37 weeks, spontaneous labour              |  |  |
| 2     | Nulliparous, single, cephalic, >37 weeks, induced labour or pre labour CS |  |  |
| 3     | Multiparous, single, cephalic, >37 weeks, spontaneous labour              |  |  |
| 4     | Multiparous, single, cephalic, >37 weeks, induced labour or pre labour CS |  |  |
| 5     | Multiparous, single, cephalic, >37 weeks, with at least one previous CS   |  |  |
| 6     | Nulliparous, single, breech                                               |  |  |
| 7     | Multiparous, single, breech including previous CS                         |  |  |
| 8     | Multiple pregnancy including previous CS                                  |  |  |
| 9     | Single pregnancy with transverse or oblique lie including previous CS     |  |  |
| 10    | Single, cephalic, <37 weeks including previous CS                         |  |  |

This classification helps to categorize women into various group and to analyse the group which contribute most and least in increasing the CS rate. It also helps to assess the effectiveness of available strategies and interventions, thus helps in improving the quality of care by learning better and improved clinical management practices. Apart from many common obstetrics risks, the recent rise in the incidence is due to several other reasons like availability and easy accessibility of better healthcare services, improvised surgical techniques, increased literacy rates, and demographic and socioeconomic factors. 5-7

In this study, we wanted to study the various indications for which caesarean sections were performed in our hospital and to analyse it using Robsons classification which can be implied to reduce the CS in the future.

#### **METHODS**

### Study type

It was a retrospective study. Data were collected from hospital-based registers of all women who underwent caesarean section in our hospital.

# Study place

This study took place at Sri Venkateshwaraa Medical College Hospital and Research Centre (SVMCH and RC), Ariyur, Puducherry.

#### Study period

The study was carried out from January 2021 till January 2024.

#### Selection criteria

Patients who had undergone caesarean section in our hospital during the above-mentioned time period were included. Demographic data like age of the patient, parity, gestational age at time of LSCS and indication for LSCS has been recorded.

#### Statistical analysis

Data obtained were analyzed using SPSS version 26.0. Descriptive statistics such as frequency, percentage, mean and standard deviation was used. Indications of CS and classification of women using RTGCS were analyzed and tabulated.

Ethical approval was not applicable as it was a retrospective study.

#### **RESULTS**

Out of 2022 deliveries conducted during the time period of January 2021 to January 2024, 984 (48.6%) were caesarean section (n=984). The mean age of the women was 27 years and the mean gestational age at which CS was performed was 38 weeks. Different age group at which each women underwent CS were studied (Figure 1). Out of these 984 women, 649 (66%) underwent emergency LSCS and 335 (34%) underwent elective LSCS (Table 2). This included 399 (40.5%) primi gravidas and 585 (59.5%) of multigravidas (Table 3).

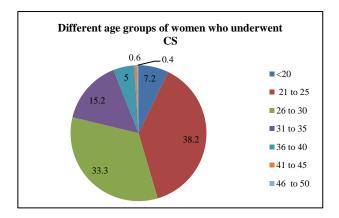



Figure 1: Different age groups of women who underwent CS (in years).

Most of the women were under age group of 21 - 25 years. 5% were elderly gravidas and less than 1% were above 40 years who underwent CS for non-obstetric indications (IVF pregnancy, maternal request)

Table 2: Distribution of LSCS according to situation.

| Situation            | Number of cases | Percentage |
|----------------------|-----------------|------------|
| <b>Elective LSCS</b> | 335             | 34         |
| Emergency<br>LSCS    | 649             | 66         |

Table 3: Distribution of LSCS among primi and multigravidas.

| Parity        | Number of cases | Percentage |
|---------------|-----------------|------------|
| Primi         | 399             | 40.5       |
| Multigravidas | 585             | 59.5       |

Table 4: Distribution of LSCS based on indication (n=984).

| Indications                 | Number of cases | Percentage |  |
|-----------------------------|-----------------|------------|--|
| Previous LSCS               | 350             | 35.6       |  |
| Fetal distress              | 202             | 20.5       |  |
| Failed induction            | 73              | 7.4        |  |
| Non progression of labor    | 40              | 4.1        |  |
| CPD                         | 110             | 11.2       |  |
| Breech                      | 42              | 4.3        |  |
| Twin gestation              | 22              | 2.2        |  |
| IVF                         | 57              | 5.8        |  |
| Maternal request            | 12              | 1.2        |  |
| Severe pre eclampsia        | 19              | 1.9        |  |
| Severe oligohydramnios      | 28              | 2.8        |  |
| Severe IUGR                 | 11              | 1.1        |  |
| APH                         | 7               | 0.7        |  |
| Malposition/malpresentation | 11              | 1.1        |  |

The most common indication of CS in our hospital was previous LSCS (35.6%) that included both elective and emergency CS which is followed by fetal distress (20.5%).

Other common indications were failed induction (7.4%), non-progression of labour (4.1%), cephalo-pelvic disproportion (11.2), breech (4.3), IVF (5.8%) with twin pregnancies (2.2%). 6% of women underwent preterm CS (group 10 of RTGCS) for various emergency indications like severe pre-eclampsia (1.9%), APH (0.7%), an hydramnios or severe oligohydramnios (2.8%) and severe growth restriction (1.1%). Around 1% of the women underwent CS for malposition/malpresentation and maternal request (Table 4).

# Classification of women according to Robson ten group classification system of CS

Most of the women belonged to group 5 (35.5%), which consists of multiparous women with previous 1 uterine scar, followed by group 2 (31.3%) and group 4 (10%) who were nulliparous women with labour induced or pre labour CS and multiparous women with labour induced or pre labour CS respectively. 6% (n=60) of women were classified under group 10 which includes women with preterm CS for various emergency indications like anhydramnios, abruption, severe pre-eclampsia, etc. 17 (1.7%) and 21 (2.1%) women were under group 6 and group 7 which included nulliparous with breech and multiparous women with breech including previous CS. Group 1 and group 3 which included nulliparous and multiparous women with spontaneous labour were 6.2% and 4.3% respectively. Women with multiple pregnancies (group 8) were 2.2% and oblique or transverse lie (group 9) were less than 1% (Table 5).

Table 5: Distribution of LSCS based on RTGCS (n=984).

| Group | Category                                                                  | Number | Percentage |
|-------|---------------------------------------------------------------------------|--------|------------|
| 1     | Nulliparous, single, cephalic, >37 weeks, spontaneous labour              | 61     | 6.2        |
| 2     | Nulliparous, single, cephalic, >37 weeks, induced labour or pre labour CS | 308    | 31.3       |
| 3     | Multiparous, single, cephalic, >37 weeks, spontaneous labour              | 42     | 4.3        |
| 4     | Multiparous, single, cephalic, >37 weeks, induced labour or pre labour CS | 98     | 10         |
| 5     | Multiparous, single, cephalic, >37 weeks, with at least one previous CS   | 349    | 35.5       |
| 6     | Nulliparous, single, breech                                               | 17     | 1.7        |
| 7     | Multiparous, single, breech including previous CS                         | 21     | 2.1        |
| 8     | Multiple pregnancy including previous CS                                  | 22     | 2.2        |
| 9     | Single pregnancy with transverse or oblique lie including previous CS     | 6      | 0.6        |
| 10    | Single, cephalic, <37 weeks including previous CS                         | 60     | 6          |

#### DISCUSSION

The rate of caesarean section has been increased and the indication of LSCS has been changing in the past decade. The most common indication is previous LSCS followed by fetal distress which is similar to the study performed at a tertiary care hospital of Rajasthan, India.<sup>3</sup> Similar results were seen in few other studies done at Nawaz sharif social security hospital in Pakistan, Mymensingh medical college, Bangladesh and Bhutan, where the most common

indication for LSCS was previous LSCS followed by fetal distress. 4.5.8

Similar study performed in rural aspect of Haryana, India, shows the most common indication of cesarean section was fetal distress followed by previous LSCS.<sup>9</sup>

Also, in this study, when assessed with RTGCS, majority of women were under Group 5 followed by group 2 and group 4 which is similar to the study performed in a tertiary

care hospital of Manipur.<sup>10</sup> The increased rate of caesarean section in our hospital is mostly because mothers presented to us were those who underwent either one or multiple caesarean sections in their earlier pregnancy. As most of the medical and surgical expenses is done at free of cost in our hospital, most of the mothers with poor socioeconomic background who had either one or multiple CS in their earlier pregnancies were booked with us. Most of the mothers with previous LSCS were taken up for planned repeat CS in their subsequent pregnancies considering higher risks to both mother and baby due to VBAC and uterine rupture causing increase in maternal and perinatal mortality.

The next common indication for higher rate of CS is fetal distress which may be due to frequent and continuous electronic monitoring of fetus because most of the antenatal cases booked with us are high risk pregnancies. The higher rates of CS done due to fetal asphyxia do not show significant difference in the perinatal outcome. The other obstetric risks like CPD, malpresentation, twin gestation, oligohydramnios, severe preeclampsia etc where CS were planned in prior may lead to decrease in maternal and perinatal mortality.

Even though, LSCS due to maternal request is increasing at present, the percentage of mother who underwent CS due to maternal request is very less in our hospital. This is a contrary to the western data where caesarean section performed due to maternal request was the most common indication followed by other indications like breech, fetal asphyxia etc.<sup>9</sup>

The rise in infertility related problems leading to higher incidence of IVF conception and elderly conception of pregnancy leads to increase in rate of elective LSCS in nulliparous women in concern to precious baby. Majority of women belonged to group 5 of Robsons classification which implies reducing CS among group 1 and group 2 will reduce the rate of CS performed during subsequent pregnancies. Regular antenatal follow ups and careful observation of both mother and fetus throughout the pregnancy can pick up obstetrics risks earlier. Appropriate monitoring and intervention of cardiotocography during labour can lead to better decision making in performing caesarean section.

The common indications for caesarean section have been studied and analysed according to RTGCS. However sufficient data was not available to identify the various other indications of caesarean section performed to yield the better strategies and recommendations in decreasing the caesarean section rates in the study population.

#### **CONCLUSION**

Proper counselling and education to mothers about their pregnancy outcomes during the antenatal visits may help in reducing the fear and anxiety about normal vaginal delivery thus may be helpful in reducing the rate of caesarean section if performed in non-obstetrics indications like maternal request. Trial of labor can be considered for women with previous CS who were the major contribution for repeat CS. Decision on performing CS in case of fetal distress, CPD and induced mothers should be considered and should be done if utmost indicated by ensuring safety and well-being of both mother and baby.

Funding: No funding sources Conflict of interest: None declared

Ethical approval: The study was approved by the

Institutional Ethics Committee

#### REFERENCES

- World Health Organisation. Monitoring emergency obstetric care: a handbook. Geneva, Switzerland; 2009.
- 2. Robsons classification: Implementation manual. Available from: https://www.who.int/publications/i/item/9789241513197. Accessed on 2 June 2022.
- 3. Althabe F, Belizon JM. LSCS: the paradox. Lancet. 2006;368(9546):1472-3.
- Sharma N, Jhanwar A. Study of incidence, trends and determinants of caesarean section in tertiary care hospital of Rajasthan, India. Int J Reprod Contracept Obstet Gynecol. 2018;7(7):2672-6.
- 5. Rafique S, Rana G. Changing trends in cesarean section rate and indications. Pak J Surg. 2012;28(1):60-4.
- 6. Nahar K. Indications of cesarean section: study of 100 cases in Mymensingh medical college hospital. J Shaheed Suhrawardy Med Coll. 2009;1(1):6-10.
- Yadav S, Kaur S, Yadav SS, Thakur B. Analysis of caesarean rate, indications and complications: review from medical college Ambala, Haryana, India. Int J Reprod Contracept Obstet Gynecol. 2016;5(10):3326-9.
- 8. Singh N, Pradeep Y, Jauhari S. Indications and determinants of cesarean section: A cross-sectional study. Int J App Basic Med Res 2020;10:280-5
- 9. Dorji T, Dorji P, Gyamtsho S, Tamang ST, Wangden T, Wangmo S, et al. Rates and indications of caesarean section deliveries in Bhutan 2015-2019: a national review. BMC Pregnancy Childbirth. 2021;21(1):698.
- 10. da Silva Charvalho P, Hansson Bittár M, Vladic Stjernholm Y. Indications for increase in caesarean delivery. Reprod Health. 2019;16:1-6.
- 11. Janani L, Christina S, Akoijam BS, Nameirakpam D, Laiphrakpam RS. Analysis of cesarean section rates and its indications using Robson's classification at a tertiary care hospital, Manipur. Indian J Public Health. 2022;66:434-8.
- 12. Abdo AA, Hinderaker SG, Tekle AG, Lindtjørn B. Cesarean section rates analysed using Robson's 10-group classification system: a cross-sectional study at a tertiary hospital in Ethiopia. BMJ Open. 2020;10(10):e039098.

- 13. Jiandani F, Somalwar S, Bhalerao A. Frequency of cesarean section classified by Robson's ten group classification system: a scoping review. Cureus. 2023;15(6):e41091.
- 14. Gautam P, Karki C, Adhikari A. Robson's group 2 criteria among total cesarean sections in a tertiary care hospital: a descriptive cross-sectional study. JNMA J Nepal Med Assoc. 2021;59(243):1098-101
- 15. Dhodapkar SB, Bhairavi S, Daniel M, Chauhan NS, Chauhan RC. Analysis of cesarean sections according to Robson's ten group classification system at a

tertiary care teaching hospital in South India Int J Reprod Contracept Obstet Gynecol. 2015;4:745-9.

Cite this article as: Sukanya K, Jaget N, Sekar S, Hiremath PB. Study on caesarean section rate using Robsons ten group classification system and its implications- a retrospective analysis from a medical college in the union territory of Puducherry. Int J Reprod Contracept Obstet Gynecol 2025;14:1502-6.