

A cross-sectional study for induction to delivery interval with sweeping of membrane followed by misoprostol

Anmol A. Vaishnav*, Chirom Pritamkumar Singh, Saiprittam Kar, Beena Gurung,
Neiketouzo Kulnu, Botoxu Swu

Department of Obstetrics and Gynecology, Regional Institute of Medical Sciences, Imphal, Manipur, India

Received: 02 December 2025

Revised: 08 January 2026

Accepted: 09 January 2026

***Correspondence:**

Dr. Anmol A. Vaishnav,

E-mail: vaishnavanmol786@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Background: Post-term pregnancy carries increased maternal and neonatal risks, necessitating timely and effective induction. Membrane sweeping is a simple mechanical technique that promotes endogenous prostaglandin release and may enhance the cervical-ripening effect of misoprostol. This study evaluated whether membrane sweeping before misoprostol improves induction outcomes in term nulliparous women.

Methods: A cross-sectional study was conducted among 78 low-risk nulliparous women ≥ 40 weeks. Group 1 (n=39) received misoprostol alone, and group 2 (n=39) underwent membrane sweeping followed by misoprostol. Primary outcome was the induction-to-delivery interval; secondary outcomes included latency period, induction-to-full dilatation, labor duration, oxytocin requirement, maternal complications, and neonatal outcomes. Standard statistical tests and logistic regression were applied using IBM SPSS v1.0.0.1406.

Results: Baseline characteristics were comparable (mean age 26.47 years, BMI 23.38 kg/m², gestational age 40.32 weeks, Bishop score 4.37). Membrane sweeping significantly shortened duration of labor and time to full dilatation (p<0.05). The mean induction-to-delivery interval was 18.01 hours, with a faster trend in the sweeping group. Latency period strongly correlated with full dilatation (r=0.853) and induction-to-delivery interval (r=0.876) (p<0.001). Maternal and neonatal complications were similar. Mean APGAR scores were 6.87 at 1 minute and 8.88 at 5 minutes; mean birth weight 3.11 kg.

Conclusions: Membrane sweeping before misoprostol is a safe and effective adjunct that improves labor progression without increasing maternal or neonatal risks.

Keywords: Induction, Labor outcomes, Membrane sweeping, Misoprostol, Term pregnancy

INTRODUCTION

Post-term pregnancy, defined as gestation extending beyond 40–42 weeks, is associated with a progressive rise in maternal and neonatal complications, including oligohydramnios, meconium aspiration, fetal distress, shoulder dystocia, postpartum hemorrhage, and increased operative delivery rates.^{1,3} As pregnancy advances, placental senescence and reduced uteroplacental perfusion may further compromise fetomaternal well-being. For this reason, timely induction of labor becomes particularly important in term nulliparous women. NICE (2024)

recommends counselling all women by 38 weeks regarding the risks of prolonged pregnancy and available options such as membrane sweeping or induction of labor.⁴ Several factors- such as primigravidity, prior post-term pregnancy, and fetal anomalies- predispose to post-maturity, while fetal and maternal complications have been widely documented.⁵⁻⁸

Induction of labor (IOL), defined as the artificial initiation of cervical ripening and contractions, has increased globally to nearly 25.5% due to rising medical indications and contemporary evidence supporting earlier induction.⁹

¹³ The Bishop score remains central to assessing readiness for induction, while methods such as prostaglandins, oxytocin, and mechanical techniques including Foley catheters and membrane sweeping- are commonly used.¹⁴⁻¹⁷

Membrane sweeping is a simple mechanical procedure that promotes endogenous prostaglandin release and cervical remodeling.¹⁸ It has been shown to be safe even in group B *Streptococcus*-colonized women and is supported by large reviews, including the 2020 Cochrane update, which confirmed its effectiveness in reducing prolonged pregnancies without increasing maternal or neonatal infection.¹⁹⁻²¹ Some studies indicate that repeated sweeping may be more effective than a single attempt, and sweeping may enhance the clinical performance of misoprostol by improving cervical favorability.²²⁻²⁸

Given these findings, this study evaluated whether membrane sweeping prior to misoprostol induction shortens the induction-to-delivery interval and improves maternal and neonatal outcomes.

METHODS

This cross-sectional comparative study was conducted in the department of obstetrics and gynecology, Regional Institute of Medical Sciences (RIMS), Imphal, over a two-year period from May 2022 to June 2024. A total of 78 sample size was calculated as per the formula $N = (Z)^2 \sigma^2 / L^2$ at 95% confidence interval, where the allowable margin of error was considered as 1.29. A total of 78 low-risk nulliparous women with singleton, cephalic pregnancies at ≥ 40 weeks of gestation were recruited after confirming eligibility through clinical assessment and first-trimester dating ultrasound. Only women with unfavorable cervix (Bishop score < 6), intact membranes, and no signs of spontaneous labor were included. Women with meconium-stained liquor, cephalopelvic disproportion, antepartum hemorrhage, hypertensive disorders, gestational diabetes, oligohydramnios, PROM,

previous uterine surgery, or any contraindication to vaginal delivery were excluded to ensure homogeneity and safety.

After informed consent, participants were randomly allocated into two equal groups: group 1 received misoprostol alone, whereas group 2 underwent membrane sweeping immediately prior to misoprostol induction. Membrane sweeping was performed during sterile vaginal examination by inserting a gloved finger through the internal os and rotating circumferentially to separate the membranes from the lower uterine segment. Induction was carried out using 25 mcg vaginal misoprostol administered every 4-6 hours, up to a maximum of four doses or until adequate contractions and cervical change occurred. Oxytocin augmentation and artificial rupture of membranes were used when clinically indicated. Continuous maternal and fetal monitoring was ensured using partographs, intermittent auscultation, and electronic fetal monitoring as required.

The primary outcome was the induction-to-delivery interval. Secondary outcomes included latency period, induction-to-full cervical dilatation time, total duration of labor, mode of delivery, need for oxytocin, maternal complications (tachysystole, hyperstimulation, PPH, fever), neonatal outcomes (APGAR scores, NICU admissions), and birth weight. Data were entered and analyzed using SPSS v21, applying independent t-test, Mann-Whitney U test, chi-square test, Spearman correlation, and logistic regression, with statistical significance set at $p < 0.05$.

RESULTS

A total of 78 women were included in the study, with 39 induced using misoprostol alone and 39 undergoing membranes sweeping followed by misoprostol. The mean age was 26.47 ± 3.33 years, comparable between groups (Table 1).

Table 1: Descriptive statistics.

	N	Min.	Max.	Mean	SD	Variance
Age: method of induction: misoprostol only	39	19	39	26.67	3.709	
Age: method of induction: sweeping f/b misoprostol	39	20	39	26.28	2.946	
Age: total	78			26.47	3.333	
BMI pre-pregnancy (kg/m²)	78	21.0	27.0	23.385	1.3116	1.720
Period of gestation (weeks)	78	40.0	41.0	40.327	0.2607	0.068
Latency period (hours:minute)	78	5:00	17:00	10:20	2:43	95711883.117
Bishop score at induction	78	4.00	5.00	4.3718	0.48641	0.237
Duration of ruptured membranes	78	1:00	6:00	3:36	0:50	9233759.041
Induction to full dilatation (hours:minute)	75	10:00	24:00	16:58	2:56	111575124.324
Duration of labor (hours:minute)	78	3:00	10:00	7:36	1:18	22289865.135
Induction to delivery time interval	78	11:30	25:45	18:01	2:56	112172547.453
APGAR Score at 1 minute	78	5	8	6.87	0.437	0.191
APGAR Score at 5 minutes	78	7	9	8.88	0.360	0.129
Birth Weight (Kg)	77	2.4	3.6	3.114	0.2905	0.084

Table 2: Correlation statistics.

List of significant correlations on Spearman's test.		Coefficient	Significance 2-tailed (p value)
Variables			
Method of induction and Bishop score at induction	-0.292	0.01**	
Method of induction and induction to full dilatation	-0.232	0.046*	
Method of induction and duration of labor	-0.270	0.017*	
Age and neonatal complications	0.235	0.072*	
Age and APGAR at 1 minute	-0.270	0.017*	
Age and APGAR at 5 minutes	-0.257	0.023*	
BMI and neonatal complications	0.248	0.029*	
BMI and APGAR at 1 minute	-0.289	0.010**	
Bishop score and method of induction	-0.292	0.010**	
Bishop score and duration of rupture of membranes	-0.249	0.028*	
Latency period and induction to full dilatation	0.853	0.000**	
Latency period and induction to delivery time	0.876	0.000**	
Latency period with intrapartum need for oxytocin	0.266	0.019*	
Latency period with labor complications	0.321	0.004**	
Latency period with neonatal complications	0.298	0.008**	
Latency period and APGAR1	-0.323	0.004**	
Latency period and APGAR5	-0.266	0.019*	
Duration of rupture of membrane and intrapartum need for oxytocin	0.229	0.044*	
Induction to full dilatation and duration of labor	0.410	0.000**	
Induction to full dilatation and induction to delivery time interval	0.941	0.000**	
Induction to full dilatation and intrapartum need for oxytocin	0.478	0.000**	
Induction to full dilatation and neonatal complication	0.273	0.018*	
Induction to full dilatation and APGAR1	-0.301	0.009**	
Duration of labor and Induction to delivery time interval	0.467	0.000**	
Duration of labor and intrapartum need for oxytocin	0.718	0.000**	
Duration of labor and APGAR5	0.243	0.032*	
Induction to delivery time and intrapartum need for oxytocin	0.559	0.000**	
Labor complications and neonatal complications	0.795	0.000**	
Labor complications and APGAR1	-0.762	0.000**	
Labor complications and APGAR5	-0.852	0.000**	
Neonatal complications and APGAR1	-0.954	0.000**	
Neonatal complications and APGAR5	-0.938	0.000**	
APGAR1 and APGAR5	0.896	0.000**	

**Corelation is significant at the 0.01 level (2-tailed). *Corelation is significant at the 0.05 level (2-tailed).

Table 3: Test of significance- independent samples test.

	Levene test for equality of variances		t-test for equality of means						
	F	Sig.	t	df	Sig. (2-tailed)	Mean diff.	SE diff.	95% CI lower	95% CI upper
Latency period (equal variances assumed)	2.071	0.154	0.961	76	0.339	0.35	0.36	-0.38	1.49
Latency period (equal variances not assumed)			0.961	68.991	0.340	0.35	0.36	-0.38	1.49
Induction to full dilatation (equal variances assumed)	1.626	0.206	1.813	73	0.074	1.12	0.40	-0.07	2.32
Induction to full dilatation (equal variances not assumed)			1.806	66.489	0.076	1.12	0.40	-0.07	2.32
Induction to delivery time interval (equal variances assumed)	1.461	0.231	1.674	76	0.098	1.06	0.39	-0.12	2.24
Induction to delivery time interval (equal variances not assumed)			1.674	71.239	0.098	1.06	0.39	-0.12	2.24

For parametric variables - independent samples test was used. Assumption test for independent t test was run (Levene's test)

Table 4: Ranks.

	Method of Induction	N	Mean rank	P value
Latency period	Misoprostol only	39	42.64	
Latency period	Stripping f/b misoprostol	39	36.36	
Latency period	Total	78		0.221
Duration of ruptured membranes	Misoprostol only	39	39.69	
Duration of ruptured membranes	Stripping f/b misoprostol	39	39.31	
Duration of ruptured membranes	Total	78		0.942
Induction to full dilatation	Misoprostol only	38	42.93	
Induction to full dilatation	Stripping f/b misoprostol	37	32.93	
Induction to full dilatation	Total	75		0.046
Duration of labor	Misoprostol only	39	45.50	
Duration of labor	Stripping f/b misoprostol	39	33.50	
Duration of labor	Total	78		0.018
Induction to delivery time interval	Misoprostol only	39	44.17	
Induction to delivery time interval	Stripping f/b misoprostol	39	34.83	
Induction to delivery time interval	Total	78		0.068

WMW test reveals significant difference only in Duration of labor and the time from induction to full dilatation between the two methods of induction.

Table 5: Logistic regression.

Variables in the equation (logistic regression)- labor complications									
	Variables	B	S.E.	Wald	df	Sig.	Exp(B)	95% CI lower	95% CI upper
Step 1 ^a	Latency period	0.002	0.053	0.002	1	0.964	1.002	0.904	1.112
	Duration of ruptured membranes	0.001	0.000	4.166	1	0.041	1.001	1.000	1.002
	Induction to full dilatation	-0.001	0.001	1.568	1	0.210	0.999	0.997	1.001
	Duration of labor	0.002	0.053	0.002	1	0.967	1.002	0.904	1.112
	Induction to delivery time interval	-0.001	0.053	0.001	1	0.982	0.999	0.900	1.108
	Constant	-17.331	7.854	4.869	1	0.027	0.000		

Testing model for assessing association between different variables and presence and absence of Labor complications. ^aVariables entered on step 1: latency period, duration of ruptured membranes, induction to full dilatation, duration of labor, induction to delivery time interval. This model has a 92% accuracy in predicting labor complications in this study. This can successfully predict 71.6% (Pseudo R square) of the variance in the labor complications. Only Duration of labor after rupture of membranes has a significant association with presence or absence of labor complications with a p value of 0.041 although it has a low OR of 1.001.

Baseline parameters showed a mean BMI of 23.38 kg/m², mean gestational age of 40.32 weeks, and mean Bishop score of 4.37, indicating uniformly unfavorable cervix. The mean latency period was 10:20 hours, the mean induction-to-full dilatation time was 16:58 hours, the duration of labor averaged 7:36 hours, and the induction-to-delivery interval was 18:01 hours (Table 2). Neonatal outcomes were favorable, with mean Apgar scores of 6.87 at 1 minute and 8.88 at 5 minutes, and a mean birth weight of 3.11 kg.

Normality testing identified latency period, induction-to-full dilatation, and induction-to-delivery interval as parametric variables (Table 3). Spearman correlation revealed significant associations between the method of induction and Bishop score, induction-to-full dilatation, and duration of labor. The latency period showed strong positive correlations with induction-to-full dilatation

(r=0.853) and induction-to-delivery interval (r=0.876), along with significant correlations with oxytocin requirement, labor complications, neonatal complications, and Apgar scores (Table 4). Induction-to-full dilatation time correlated strongly with both duration of labor and overall induction-to-delivery interval.

Mann-Whitney U analysis demonstrated significant differences between the two induction methods in duration of labor and time to full dilatation, favoring membrane sweeping. Logistic regression identified duration of labor after rupture of membranes as the only significant predictor of both labor (p=0.041) and neonatal complications (p=0.022), albeit with a low odds ratio. Chi-square testing showed no significant difference between groups in labor complications, neonatal complications, or oxytocin requirement.

Table 6: Chi square test.

Method of Induction	Labor complications		Neonatal complications		Need for oxytocin		Total
	No	Yes	No	Yes	No	Yes	
Misoprostol only	32	7	34	5	15	24	39
Stripping f/b Misoprostol	35	4	35	4	18	21	39
Total	67	11	69	9	33	45	78
Fisher's exact/chi square value	0.517		1.0		0.473		
Significance	Not significant		Not significant		Not significant		

DISCUSSION

The spontaneous onset of labor is a strong physiological process guided by fetal system maturation, and should be allowed to progress naturally whenever safely possible. As Turnbull noted, “We should only induce labor when we are confident that we can do better”.³⁰ Effective induction of labor (IOL) reduces cesarean delivery rates, but despite multiple pharmacological and mechanical options, the optimal method remains unclear because success varies with maternal and obstetric factors.³¹ This study aimed to determine whether membrane sweeping combined with misoprostol offers any advantage over misoprostol alone in achieving vaginal delivery within 24 hours.

Membrane sweeping was first introduced by James Hamilton in 1810. Multiple studies report that sweeping increases spontaneous vaginal delivery, shortens induction-to-delivery intervals, reduces post-term pregnancy, and decreases the need for formal induction.^{32,33} The STRIP-G study further demonstrated that sweeping is safe even in women colonized with group B *Streptococcus*.³⁴

Several studies have evaluated timing and effectiveness of sweeping. Yildirim et al. compared sweeping at 38-40 weeks (n=179) with pelvic examination alone (n=167), reporting significantly shorter time to delivery in the sweeping group (4 versus 8 days, p<0.0001).³⁵ Hassan reported an 86.4% success rate of vaginal birth with sweeping at 40 weeks.³⁶ In this study, sweeping was also initiated at 40 weeks to determine whether it shortened the induction-to-delivery interval when used before misoprostol.

A total of 78 women were enrolled and randomized into group 1 (misoprostol alone, n=39) and group 2 (membrane sweeping + misoprostol, n=39). Baseline demographics were comparable: mean age was 26.67 ± 3.709 versus 26.28 ± 2.946 ; booking status identical (51.28% booked in each group). Working women comprised 38.46% versus 30.76%, and homemakers 61.53% versus 69.23%. Education levels were also similar: $\leq 12^{\text{th}}$ standard (76.92% versus 71.79%), undergraduate (15.38% versus 25.64%), and postgraduate (7.69% versus 2.56%).

Vaginal delivery occurred in 87.17% of women receiving misoprostol alone versus 92.30% in the sweeping group

(p=0.300). Although this trend favored sweeping, it did not reach statistical significance. Liu similarly reported higher vaginal birth rates in nulliparous women following sweeping.³⁷

Maternal outcomes were favorable in both groups. Overall, 76.92% of women had no complications. Tachysystole occurred in 2.56%, hyperstimulation in 5.12%, and PROM in 12.82-15.38%. No cases of postpartum hemorrhage or chorioamnionitis were observed.

Neonatal outcomes were similarly reassuring. Apgar ≥ 7 at 1 minute was 87.17% versus 92.30%, and Apgar ≥ 8 at 5 minutes 97.43% versus 100%. One neonate (2.56%) in the misoprostol-only group required NICU admission. These findings mirror Nyamzi et al, who reported NICU admission rates of 3.1% and 4.1% following sweeping.³⁸

Latency periods were 10:38 hours versus 10:03 hours (p=0.169). Induction-to-delivery time was shorter in the sweeping group: 66.66% delivered in 12-18 hours versus 48.71% in the misoprostol group, while 51.28% versus 30.76% delivered between 18-24 hours. Additionally, 10.25% of women in the sweeping group delivered within 12 hours. Despite these improvements, differences were not statistically significant- consistent with Day's findings (19.9 versus 18.7 hours).³⁹

The major strength of this study is that all inductions were conducted uniformly at a single center, minimizing management-related bias.

CONCLUSION

In this study, 78 low-risk nulliparous term women were randomized to induction with misoprostol alone or membrane sweeping followed by misoprostol. Both groups were comparable in age, pre-gestational BMI, gestational age, and other baseline parameters. There were no significant differences in uterine hyperstimulation, abnormal fetal heart rate patterns, neonatal Apgar scores, or oxytocin and analgesic requirements. Membrane sweeping did not increase maternal or neonatal complications and was associated with a higher rate of spontaneous rupture of membranes, without increasing PROM. Despite having a lower modified Bishop score, the membrane-sweeping group experienced a shorter

induction-to-delivery interval, though not statistically significant.

ACKNOWLEDGEMENTS

The authors acknowledged the participants and other supportive staff involved in the study.

Funding: No funding sources

Conflict of interest: None declared

Ethical approval: The study was approved by the Institutional Ethics Committee Regional Institute of Medical Sciences (RIMS), Imphal

REFERENCES

1. Martin JA, Hamilton BE, Sutton PD, Ventura SJ, Menacker F, Kirmeyer S, et al. Centers for Disease Control and Prevention National Center for Health Statistics National Vital Statistics System. Births: final data for 2005. *Nat Vital Stat Rep.* 2007;56(6):1-103.
2. Divon MY, Haglund B, Nisell H, Otterblad PO, Westgren M. Fetal and neonatal mortality in the postterm pregnancy: the impact of gestational age and fetal growth restriction. *Am J Obstet Gynecol.* 1998;178(4):726-31.
3. Bakketeg LS, Bergsjo P. Post-term pregnancy: magnitude of the problem. *Effect care Pregnancy Childbirth.* 1989;1:765-75.
4. Taylor B, Cross-Sudworth F, Rimmer M, Quinn L, Morris RK, Johnston T, et al. Induction of labour care in the UK: a cross-sectional survey of maternity units. *PLOS One.* 2024;19(2):e0297857.
5. Zenzmaier C, Leitner H, Brezinka C, Oberaigner W, König-Bachmann M. Maternal and neonatal outcomes after induction of labor: a population-based study. *Arch Gynecol Obstet.* 2017;295(5):1175-83.
6. Norwitz ER, Snegovskikh VV, Caughey AB. Prolonged pregnancy: when should we intervene? *Clin Obstet Gynecol.* 2007;50(2):547-57.
7. Arrowsmith S, Wray S, Quenby S. Maternal obesity and labour complications following induction of labour in prolonged pregnancy. *BJOG.* 2011;118(5):578-88.
8. American College of Nurse-Midwives, Carlson NS, Dunn Amore A, Ellis JA, Page K, Schafer R. American college of nurse-midwives clinical bulletin number 18: induction of labor. *J Midwifery Women's Health.* 2022;67(1):140-9.
9. ACOG Practice Bulletin No. 107: Induction of labor. *Obstet Gynecol.* 2009;114(2 Pt 1):386-97.
10. Friedman M, Korst LM, Chow J, Lawton E, Mitchell C, Gregory KD. Trends in maternal morbidity before and during pregnancy in California. *Am J Public Health.* 2014;104(Suppl 1):S49-57.
11. American College of Nurse-Midwives; Midwives Alliance of North America; National Association of Certified Professional Midwives. Supporting healthy and normal physiologic childbirth: a consensus statement by the American College of Nurse-Midwives, Midwives Alliance of North America, and the National Association of Certified Professional Midwives. *J Midwife Womens Health.* 2012;57(5):529-32.
12. Dublin S, Johnson KE, Walker RL, Avalos LA, Andrade SE, Beaton SJ, et al. Trends in elective labor induction for six United States health plans, 2001-2007. *J Women's Health.* 2014;23(11):904-11.
13. Grobman WA, Rice MM, Reddy UM, Tita AT, Silver RM, Mallett G, et al. Labor induction versus expectant management in low-risk nulliparous women. *N Engl J Med.* 2018;379(6):513-23.
14. Pransukhbhai PY, Londhe P. Study of maternal and fetal outcome in postdate pregnancy in tertiary care hospital. *Int J Reprod Contracept Obstet Gynecol.* 2020;9(9):3585-90.
15. Cunningham FG, Leveno KJ, Bloom SL, Dashe JS, Hoffman BL, Casey BM, et al. Physiology of labor. In: Williams Obstetrics. 24th edn. McGraw Hill Education; 2014:408-432.
16. Applegate M, Wiggins M, Bailit JL. Are trends in the proportions of non-medically indicated inductions different by Medicaid status? *J Perinatol.* 2015;35(5):353-6.
17. Jozwiak M, Bloemenkamp KW, Kelly AJ, Mol BW, Irion O, Boulvain M. Mechanical methods for induction of labour. *Cochrane Database Syst Rev.* 2012(3).
18. Akins ML, Luby-Phelps K, Bank RA, Mahendroo M. Cervical softening during pregnancy: regulated changes in collagen cross-linking and composition of matricellular proteins in the mouse. *Biol Reprod.* 2011;84(5):1053-62.
19. Mei JY, Silverman NS. Group B *Streptococcus* in pregnancy. *Obstet Gynecol Clin.* 2023;50(2):375-87.
20. Finucane EM, Murphy DJ, Biesty LM, Gyte GM, Cotter AM, Ryan EM, et al. Membrane sweeping for induction of labour. *Cochrane Database Syst Rev.* 2020(2).
21. Boulvain M, Stan CM, Irion O. Membrane sweeping for induction of labour. *Cochrane Database Syst Rev.* 2005(1).
22. Boulvain M, Irion O, Marcoux S, Fraser W. Sweeping of the membranes to prevent post-term pregnancy and to induce labour: a systematic review. *BJOG.* 1999;106(5):481-5.
23. Boulvain M, Irion O. Stripping/sweeping the membranes for inducing labour or preventing post-term pregnancy. *Cochrane Database Syst Rev.* 2000;2:CD000451-.
24. Wiriayasirivaj B, Vutyavanich T, Ruangsri RA. A randomized controlled trial of membrane stripping at term to promote labor. *Obstet Gynecol.* 1996;87(5):767-70.
25. Goldenberg M, Dulitzky M, Feldman B, Zolti M, Bider D. Stretching of the cervix and stripping of the membranes at term: a randomised controlled study. *Eur J Obstet Gynecol Reprod Biol.* 1996;66(2):129-32.

26. El-Torkey MO, Grant JM. Sweeping of the membranes is an effective method of induction of labour in prolonged pregnancy: a report of a randomized trial. *BJOG.* 1992;99(6):455-8.
27. Cammu H, Haitsma V. Sweeping of the membranes at 39 weeks in nulliparous women: a randomised controlled trial. *BJOG.* 1998;105(1):41-4.
28. Wong SF, Hui SK, Choi H, Ho LC. Does sweeping of membranes beyond 40 weeks reduce the need for formal induction of labour? *BJOG.* 2002;109(6):632-6.
29. Gupta R, Vasishtha K, Sawhney H, Ray P. Safety and efficacy of stripping of membranes at term. *Int J Gynecol Obstet.* 1998;60(2):115-21.
30. Vahrtian A, Zhang J, Troendle JF, Sciscione AC, Hoffman MK. Labor progression and risk of cesarean delivery in electively induced nulliparas. *Obstet Gynecol.* 2005;105(4):698-704.
31. Bhatia A, Teo PL, Li M, Lee JY, Chan MX, Yeo TW, et al. Dinoprostone vaginal insert (DVI) versus adjunctive sweeping of membranes and DVI for term induction of labor. *J Obstet Gynecol Res.* 2021;47(9):3171-8.
32. Tan PC, Jacob R, Omar SZ. Membrane sweeping at initiation of formal labor induction: a randomized controlled trial. *Obstet Gynecol.* 2006;107(3):569-77.
33. McColgin SW, Bennett WA, Roach H, Cowan BD, Martin Jr JN, Morrison JC. Parturitional factors associated with membrane stripping. *Am J Obstet Gynecol.* 1993;169(1):71-7.
34. Kabiri D, Paltiel O, Ofek-Shlomai N, Nir-Paz R, Sompolinsky Y, Ezra Y. Membrane stripping in group B streptococcus carriers does not impede adequate intrapartum antibiotic prophylaxis: a retrospective study. *Front Med.* 2024;11:1368998.
35. Yıldırım G, Güngördeğik K, Karadağ Öl, Aslan H, Turhan E, Ceylan Y. Membrane sweeping to induce labor in low-risk patients at term pregnancy: a randomised controlled trial. *J Matern Fet Neonat Med.* 2010;23(7):681-7.
36. Hassan AM. Membrane sweeping to induce labor in post-term pregnant women: success rate and outcomes. *Cureus.* 2023;15(3).
37. Liu J, Song G, Meng T, Zhao G. Membrane sweeping added to formal induction method to increase the spontaneous vaginal delivery: a meta-analysis. *Arch Gynecol Obstet.* 2018;297:623-30.
38. Nyamzi MG, Isah DA, Offiong RA, Isah AY. Effectiveness of sweeping of membranes in reducing the incidence of elective induction of labor for postdate pregnancies. *Arch Med Surg.* 2019;4:15-21.
39. Day L, Fleener D, Andrews J. 86: Membrane sweeping with labor induction- a randomized control trial. *Am J Obstet Gynecol.* 2009;201(6):S47.

Cite this article as: Vaishnav AA, Singh CP, Kar S, Gurung B, Kulnu N, Swu B. A cross-sectional study for induction to delivery interval with sweeping of membrane followed by misoprostol. *Int J Reprod Contracept Obstet Gynecol* 2026;15:651-7.