

## Impact of nutrition education on maternal hemoglobin and calcium levels during pregnancy and their association with birthweight in an Indian cohort

M. Faisal Khan<sup>1</sup>, Ashok Khurana<sup>2</sup>, K. Aparna Sharma<sup>3</sup>, Aruna Nigam<sup>4</sup>, Sana Alam<sup>5</sup>,  
M. Ghaznavi Idris<sup>6</sup>, Kapil Dev<sup>1\*</sup>

<sup>1</sup>Department of Biotechnology, Medical Biotechnology Lab, Jamia Millia Islamia, New Delhi, India

<sup>2</sup>Department of Fetal Medicine, The Ultrasound Lab, New Delhi, India

<sup>3</sup>Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, New Delhi, India

<sup>4</sup>Department of Obstetrics and Gynecology, Hamdard Institute of Medical Sciences and Research, New Delhi, India

<sup>5</sup>Department of Biochemistry, Hamdard Institute of Medical Sciences and Research, New Delhi, India

<sup>6</sup>Department of Bioengineering and Technology, Gauhati University, Guwahati, Assam, India

**Received:** 25 November 2025

**Revised:** 09 December 2025

**Accepted:** 10 December 2025

**\*Correspondence:**

Kapil Dev,

E-mail: [kdev@jmi.ac.in](mailto:kdev@jmi.ac.in)

**Copyright:** © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

### ABSTRACT

**Background:** Maternal nutrition during pregnancy is pivotal for fetal growth, neonatal health, iron stores across infancy and adolescence, and future adult disease risk. In India, this role is especially important because anemia, micronutrient deficiencies, and protein-energy malnutrition remain widespread despite national supplementation programmes. Many women still experience suboptimal outcomes due to poor dietary diversity and inconsistent adherence to iron, calcium, and protein recommendations. This study examined the effect of trimester-specific nutrition education on maternal hemoglobin and calcium levels during pregnancy. It examined whether these changes were associated with birth weight in an Indian cohort.

**Methods:** A prospective quasi-experimental cohort study was conducted at a tertiary care hospital in New Delhi among 200 pregnant women, systematically allocated to an intervention group receiving structured nutrition education or a control group receiving standard antenatal care. Maternal anthropometry, hemoglobin, calcium, and protein intake were assessed at baseline and in the third trimester, and maternal biomarkers at delivery and birth outcomes were analysed using regression methods.

**Results:** Of 200 women, 173 (88 in the intervention group, 85 in the control group) completed follow-up. At baseline, 45.7% were anemic; after the intervention, normal hemoglobin levels rose to 73.9% in the intervention group, compared with 35.3% in the control group. Hypocalcemia at delivery was 1.1% in the intervention group compared with 22.4% in controls. Protein intake and BMI improved significantly with education. Hemoglobin and calcium at birth were positively correlated in the intervention group ( $r=0.372$ ,  $p<0.05$ ), but not in the control group. Neonatal birthweight was marginally higher, and low birthweight was less frequent in the intervention group, though the differences were not statistically significant.

**Conclusions:** Trimester-specific nutrition education substantially improved maternal hemoglobin levels, calcium status, and dietary practices and is feasible for integration into routine antenatal care to support better perinatal outcomes in India.

**Keywords:** Birthweight, Calcium, Maternal hemoglobin, Nutrition education, Perinatal outcome

## INTRODUCTION

Maternal nutrition during pregnancy is a critical factor influencing fetal growth, neonatal health, and adult disease. In India, the high prevalence of maternal anemia and deficiencies in essential micronutrients like calcium and vitamin D continues to hinder efforts to improve birth outcomes, despite well-established supplementation policies and programs. India has one of the highest global rates of low birth weight (LBW), with recent data estimating rates around 17-18%.<sup>1</sup> Nearly half of pregnant women are anemic, and many have insufficient calcium intake, both of which are associated with increased risks of preterm birth, LBW, and compromised developmental outcomes.<sup>2-5</sup> Improving maternal diet and biochemical status is therefore central to strengthening perinatal health in the country.

Adequate maternal calcium has been linked with lower risks of preeclampsia and better neonatal outcomes, highlighting the importance of nutrition education to ensure sufficient intake through both diet and supplements.<sup>6,7</sup> Protein intake during pregnancy is another key factor for fetal health, as proteins provide essential building blocks for tissue development. Inadequate protein intake can negatively affect placental and fetal growth, increasing the risk of LBW.<sup>8</sup> Addressing these multiple nutritional gaps simultaneously is likely to yield the most significant benefit for mothers and infants.

Globally, structured nutrition education and counseling have become essential strategies to address gaps in maternal health.<sup>9</sup> Studies show that structured nutrition education can improve maternal dietary practice, hemoglobin and calcium levels during pregnancy, and enhance adherence to iron-folic acid and calcium supplements.<sup>9,10</sup> In India, despite government initiatives, only a limited number of women receive structured counseling focused on diet quality and adherence to supplementation.<sup>11,12</sup> In low- and middle-income countries, such interventions have lowered the prevalence of anemia and micronutrient deficiencies, leading to healthier birth weights and a reduced incidence of neonatal morbidity.<sup>9</sup> This evidence suggests that pairing supplementation with behavior-focused counseling may be more effective than supplementation alone.

The impact of nutrition education integrated into routine antenatal care remains underexplored, particularly given the complex interactions among socio-economic factors, dietary practices, and variations in health services delivery. Although government guidelines promote supplementation, barriers to sustained improvement persist. These include gaps in nutrition literacy, cultural preferences, and variability in community health worker engagement. This study aimed to address these gaps by evaluating how trimester-specific nutrition education influences maternal hemoglobin and calcium levels, protein intake, and their association with neonatal birthweight in an Indian cohort. By focusing on a real-

world tertiary-care setting, the study provides practical insights into how counseling can be embedded within existing antenatal services.

## METHODS

### *Study design and setting*

A prospective quasi-experimental cohort study with a pre-post intervention design was conducted at the Department of Obstetrics and Gynecology, Hamdard Institute of Medical Sciences and Research (HIMSR), New Delhi. Data collection took over 19 months, from October 2023 to May 2025. The site was selected for its socioeconomic diversity, aiming to represent a varied cohort. The study enrolled pregnant women at their first antenatal visit, collected baseline data, and enrolled participants consecutively; the first 100 were assigned to the intervention group, which received structured nutritional counseling, while the next 100 were assigned to the control group, which received standard antenatal care. Allocation was systematic rather than randomized to mirror real-world clinical practice, ensuring feasibility and minimizing selection bias. Ethical approval was granted by the competent authority, and written informed consent was obtained from all participants before their participation.

### *Participants*

A total of 1,892 pregnant women attending routine antenatal clinics were initially screened. Inclusion criteria included women aged 18-40 years with singleton pregnancies between 8+0 and 13+6 weeks of gestation. Women with gestational age beyond 14+0 weeks, multifetal pregnancies, conceptions through assisted reproductive techniques, pre-existing illnesses, or those diagnosed with gestational diabetes during follow-up were excluded. A structured nutrition counseling intervention was provided to the intervention group. The control group received routine antenatal care without targeted nutritional counseling.

### *Intervention*

The intervention included personalized, trimester-specific, individualized nutrition counseling by a dietitian (15-20 minutes) at 8-14, 24-28, and 32-36 weeks, based on ICMR RDA, cultural dietary patterns (vegetarianism, fasting), weight gain as per the institute of medicine (IOM), strategies to improve hemoglobin and calcium levels, and adherence to prescribed supplements (iron-folic acid and calcium) during pregnancy, and other relevant nutritional guidance, all based on national nutritional standards using pictorial handouts. The control group received routine prenatal care.

### *Data collection*

Baseline maternal assessments were conducted at enrolment to collect socio-demographic data, obstetric

history, anthropometric measurements [including self-reported pre-pregnancy weight, measured height, and weights from subsequent trimesters to calculate body mass index (BMI, kg/m<sup>2</sup>)], biochemical markers, and nutritional factors. Venous blood samples were collected at baseline (8-14 weeks) and during the third trimester (32-36 weeks) to analyse hemoglobin (Hb) levels (other biomarkers were also assessed and are detailed in another manuscript under review). We also recorded maternal Hb at birth from the patients' discharge summaries along with calcium levels. Anemia severity was categorized as per WHO guidelines: normal ( $\geq 11$  g/dL), mild (10-10.9 g/dL), moderate (7-9.9 g/dL), and severe ( $< 7$  g/dL). The hypocalcemia threshold was set at a serum calcium level below 8.5 mg/dL, based on established reference ranges for pregnancy. Dietary protein intake was evaluated using a validated 24-hour dietary recall questionnaire administered by a dietitian, with nutrient analysis performed using Indian food composition tables.

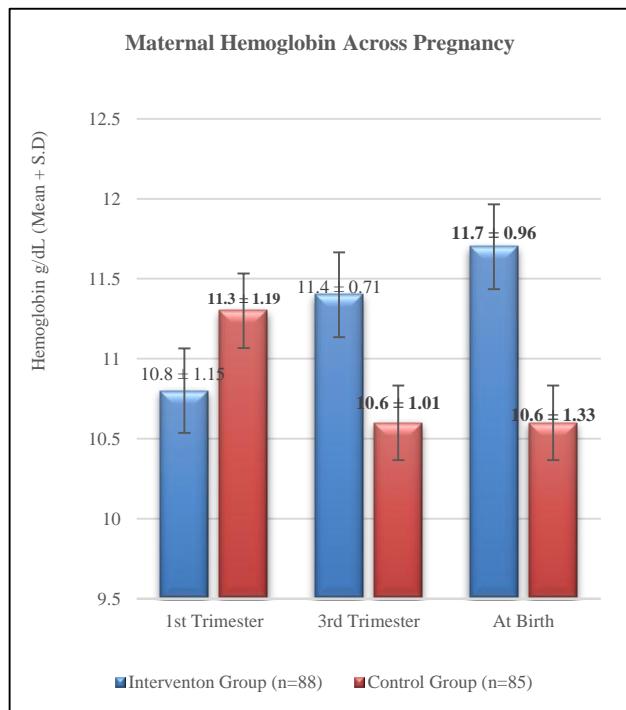
Fetal biometric data, such as estimated fetal weight (EFW), were obtained from second- and third-trimester ultrasound reports. Delivery outcomes, including mode of delivery and neonatal birth weight, were recorded from hospital registers and verified against antenatal records. Birth weight was measured within one hour of delivery using calibrated digital infant scales. LBW was defined as a birth weight of less than 2500 grams.

### Statistical analysis

Descriptive statistics summarized maternal demographic and baseline clinical variables, as well as neonatal anthropometry. Continuous variables were expressed as mean $\pm$ standard deviation. Categorical variables were presented as frequencies and percentages. Regression analyses examined associations between individual maternal predictors and LBW risk. All analyses were conducted using SPSS, RStudio, and MS-excel, with statistical significance set at  $p<0.05$ .

## RESULTS

Of the 200 participants initially enrolled, 173 completed the study. The final sample included 88 women in the intervention group and 85 in the control group. This resulted in an overall attrition rate of 13.5%, with 27 participants dropping out of the study. Medical exclusions involved 12 women diagnosed with hypothyroidism and 4 with gestational diabetes mellitus (GDM). Additional withdrawals were related to pregnancy outcomes: three miscarriages, two preterm deliveries, and one case of multifetal pregnancy. Moreover, five participants were lost to follow-up before the study's completion.


Baseline characteristics, including socio-demographic, anthropometric parameters, and gestational age at enrolment, were comparable between groups, with nonsignificant differences ( $p>0.05$ ), as summarized in Table 1. This balanced distribution of baseline

characteristics supports comparability between the study groups and the reduces potential confounding in the analysis.

### Association analyses

At baseline, 45.7% of the cohort was anemic according to WHO criteria, with 31.8% mild, 13.3% moderate, and 1% severe. Mean hemoglobin concentration was  $10.8\pm 1.15$  g/dL in the intervention group and  $11.3\pm 1.19$  g/dL in the control group. Blood pressure remained stable across both groups.

The intervention group showed significant improvement in hemoglobin levels: moderate deficiency decreased to 5.7%, mild deficiency to 20.5%, and normal levels increased to 73.9%. In contrast, the control group had higher rates of moderate (27.1%) and mild (37.6%) deficiencies, with only 35.3% reaching normal hemoglobin levels (Table 2). These patterns continued at birth: the intervention group had significantly fewer cases of moderate anemia and a higher proportion of normal hemoglobin levels than the control group. The mean Hb concentration rose during the third trimester ( $11.4\pm 0.71$  g/dL) and increased further at birth ( $11.7\pm 0.96$  g/dL) in the intervention group. Conversely, a decline in Hb concentration was observed in the control group (at the 3<sup>rd</sup> trimester,  $10.6\pm 1.01$  g/dL versus at birth,  $10.6\pm 1.33$  g/dL) (Figure 1). Nutrition education resulted in increased adherence to iron-folic acid supplementation (56.25% to 100%,  $p<0.001$ ) and vitamin D supplementation (0% to 84.37%,  $p<0.001$ ).



**Figure 1: Change in maternal hemoglobin across pregnancy, e.g., from the first trimester to birth of the child.**

**Table 1: Baseline characteristics of participants in the intervention and control groups.**

| Characteristics                                  | Intervention, (n=88)        | Control, (n=85)             |
|--------------------------------------------------|-----------------------------|-----------------------------|
| Age (in years), mean $\pm$ SD (range)            | 27.23 $\pm$ 4.25 (20-37)    | 27.59 $\pm$ 4.23 (20-37)    |
| Height (cm), mean $\pm$ SD (range)               | 154.89 $\pm$ 5.01 (142-162) | 154.61 $\pm$ 6.48 (143-170) |
| Pre-pregnancy weight (kg), mean $\pm$ SD (range) | 56.78 $\pm$ 11.89 (37-80)   | 54.07 $\pm$ 9.42 (36-70)    |
| Pre-pregnancy BMI (kg/m <sup>2</sup> )           | 23.57 $\pm$ 4.37            | 22.61 $\pm$ 3.57            |
| BMI status (kg/m <sup>2</sup> )                  | (n=173)                     |                             |
| Underweight (<18.5)                              | 14.5% (25)                  |                             |
| Overweight/obese ( $\geq$ 25)                    | 31.2% (54)                  |                             |
| Gestational age at baseline, median              | 12 weeks 4 days             |                             |
| Religion                                         |                             |                             |
| Hinduism                                         | 57.2% (99)                  |                             |
| Islam                                            | 41.6% (72)                  |                             |
| Sikhism/Christianity                             | 1.2% (2)                    |                             |
| Diet type                                        |                             |                             |
| Non-vegetarian                                   | 77.5% (134)                 |                             |
| Vegetarian                                       | 22.5% (39)                  |                             |
| Occupation                                       |                             |                             |
| Homemakers                                       | 89.7% (155)                 |                             |
| Working (senior/managerial etc.)                 | 10.3% (18)                  |                             |
| Parity                                           |                             |                             |
| Primigravida                                     | 49.1% (85)                  |                             |
| Multigravida                                     | 50.9% (88)                  |                             |
| Education                                        |                             |                             |
| $\geq$ Bachelor's degree                         | 50% (87)                    |                             |
| Illiterate (small %)                             | <2% (2)                     |                             |
| Socioeconomic status                             |                             |                             |
| Lower-middle (SES III)                           | 91%                         |                             |
| Upper-middle (SES II)                            | 8.85% (15)                  |                             |

**Table 2: Summary of maternal Hb level at different gestational stages as per WHO guidelines and maternal calcium levels at birth.**

| Biomarkers                                                | Control, (n=85) | Intervention, (n=88) |
|-----------------------------------------------------------|-----------------|----------------------|
| <b>Maternal Hb levels in the 1<sup>st</sup> trimester</b> |                 |                      |
| Normal ( $\geq$ 11g/dl)                                   | 56 (65.9%)      | 38 (43.2%)           |
| Mild deficiency (10-10.9 g/dl)                            | 22 (25.9%)      | 33 (37.5%)           |
| Moderate deficiency (7-9.9g/dl)                           | 6 (7.1%)        | 17 (19.3%)           |
| Severe deficiency ( $\leq$ 7g/dl)                         | 1 (1.1%)        | 0                    |
| <b>Maternal Hb levels in the 3<sup>rd</sup> trimester</b> |                 |                      |
| Normal                                                    | 30 (35.3%)      | 65 (73.9%)           |
| Mild deficiency                                           | 32 (37.6%)      | 18 (20.5%)           |
| Moderate deficiency                                       | 23 (27.1%)      | 5 (5.7%)             |
| <b>Maternal Hb levels at birth</b>                        |                 |                      |
| Normal                                                    | 33 (38.8%)      | 68 (77.3%)           |
| Mild deficiency                                           | 22 (25.9%)      | 18 (20.5%)           |
| Moderate deficiency                                       | 30 (35.3%)      | 2 (2.3%)             |
| <b>Maternal calcium levels at birth</b>                   |                 |                      |
| Normal ( $>$ 8.5 mg/dl)                                   | 66 (77.6%)      | 87 (98.9)            |
| Hypocalcemia ( $<$ 8.5 mg/dl)                             | 19 (22.4%)      | 1 (1.1%)             |

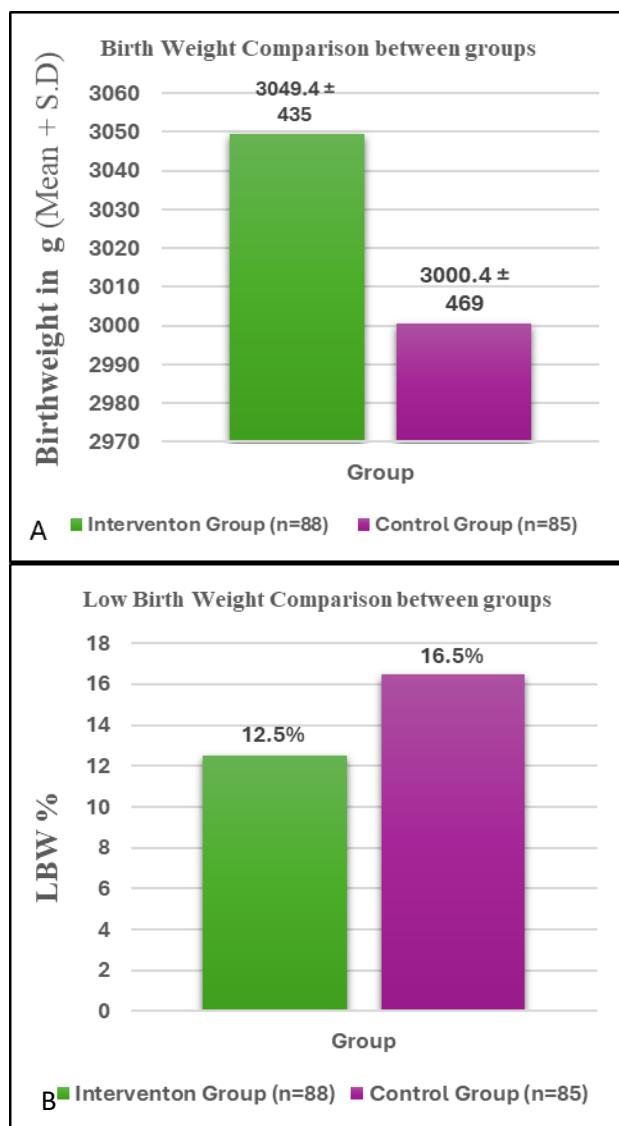
Maternal calcium levels at delivery also favored the intervention group, with only 1.1% showing hypocalcemia ( $<8.5$  mg/dl) compared to 22.4% in the control group, indicating a clear benefit of nutrition education on these important maternal biomarkers. Protein intake increased from  $50.20 \pm 9.48$  g/day to  $57.54 \pm 9.51$  g/day ( $p < 0.01$ ) in

intervention group, while control group showed minimal change from  $49.28 \pm 9.48$  g/day to  $49.85 \pm 7.34$  g/day ( $p > 0.01$ ). Relationship between maternal hemoglobin levels at birth and serum calcium levels at birth was evaluated. A significant positive correlation ( $r = 0.372$ ,  $p < 0.05$ ) was observed in intervention group, suggesting

that higher serum calcium levels are associated with higher hemoglobin levels at birth. In contrast, control group showed no significant association ( $r=0.023$ ,  $p<0.05$ ).

Continuous increases in gestational weight and BMI were observed across the groups. In the intervention group, the mean BMI increased from  $24.28\pm4.24$  kg/m<sup>2</sup> in the first trimester to  $25.90\pm3.95$  kg/m<sup>2</sup> in the second trimester and to  $27.24\pm4.14$  kg/m<sup>2</sup> in the third trimester. Similarly, the control group showed increases from  $23.26\pm3.90$  kg/m<sup>2</sup> in the first trimester to  $24.97\pm3.82$  kg/m<sup>2</sup> in the second trimester and  $26.46\pm3.93$  kg/m<sup>2</sup> in the third trimester. These data indicate a consistent increase in BMI throughout pregnancy in both groups.

The changes ( $\Delta/\Delta$ ) in weight (kg) during pregnancy showed a consistent upward trend for both intervention and control groups. Notably, the intervention group, which received trimester-specific nutritional counseling focused on weight management, experienced slightly lower overall weight gains. Specifically, from pre-pregnancy to the third trimester, the intervention group's average weight gain was  $8.86\pm3.64$  kg. In contrast, the control group gained  $9.19\pm4.27$  kilograms. Paired t-tests confirmed significant trimester-wise increases in BMI ( $p<0.001$ ) and weight ( $p<0.001$ ) within the intervention group.


Significant fetal growth was observed in both groups between the second and third trimesters. In the intervention group, estimated fetal weight (EFW) increased from 319.53 g to 2012.11 g ( $p<0.001$ ). The control group exhibited a similar increase, with EFW rising from 347.05 g to 2069.67 g ( $p<0.001$ ). Mean neonatal birthweight was slightly higher in the intervention group compared to the control group, and LBW rates were lower, although neither difference reached statistical significance ( $\chi^2=0.551$ ,  $p>0.05$ ). Mean birthweight and rate of LBW between the groups are shown in Figure 2 A and B.

In group-specific logistic regression models, higher hemoglobin and calcium levels were linked to lower odds of low birthweight in both study groups. In the control group, hemoglobin had an OR of 0.73 (95% CI: 0.45-1.16), and calcium had an OR of 0.42 (95% CI: 0.09-1.92). In the intervention group, the OR for hemoglobin was 0.53 (95% CI: 0.24-1.15), and for calcium, it was 0.47 (95% CI: 0.03-9.05). Interaction analysis showed no statistically significant differences between groups for either hemoglobin (OR=0.73, 95% CI: 0.29-1.80) or calcium (OR=1.12, 95% CI: 0.04-30.90). Binary logistic regression analysis of LBW risk indicated that higher third-trimester BMI was associated with a very small, non-significant decrease in LBW risk (OR=0.99, 95% CI: 0.888-1.1,  $p>0.05$ ).

The mean gestational age at delivery was  $38.80\pm1.40$  weeks in the control group and  $38.26\pm1.19$  weeks in the intervention group. No significant difference in gestational age at delivery was observed between the two groups. We

found that the caesarean delivery rate was higher in the control group (51.8%) compared to the intervention group (40.9%). In the intervention group, women who had a caesarean delivery had a higher mean third-trimester BMI ( $28.24\pm4.46$  kg/m<sup>2</sup>) than those who delivered vaginally ( $26.56\pm3.81$  kg/m<sup>2</sup>). However, this difference was close to but did not reach statistical significance ( $p>0.05$ ). Conversely, in control group, the BMI difference between caesarean and vaginal births was statistically significant ( $27.68\pm3.77$  kg/m<sup>2</sup> vs.  $25.83\pm3.90$  kg/m<sup>2</sup>,  $p<0.05$ ).

In group-wise analyses, mode of delivery showed no statistically significant links with hemoglobin or calcium levels in either group. In the intervention group, hemoglobin (OR=0.78; 95% CI: 0.48-1.26;  $p>0.05$ ) and calcium (OR=0.20; 95% CI: 0.02-2.20;  $p>0.05$ ) were not associated with normal delivery compared with cesarean section. In the control group, the odds ratios were 0.87 (95% CI: 0.62-1.23;  $p>0.05$ ) for hemoglobin and 2.10 (95% CI: 0.69-6.41;  $p>0.05$ ) for calcium.



**Figure 2 (A and B): Comparison of birth weight and LBW between the groups.**

## DISCUSSION

The findings of this study emphasize the significant impact of trimester-specific nutrition education on enhancing maternal hemoglobin and calcium levels during pregnancy in an urban Indian cohort. These improvements were linked to increased protein intake and reduced hypocalcemia rates at delivery among women who received structured nutritional counseling. Such results highlight the crucial role of targeted nutritional interventions in antenatal care, especially in a country like India, where there are persistently high rates of maternal anemia, and micronutrient deficiencies remain prevalent, despite national programs promoting iron and folic acid supplementation.<sup>13</sup> Our findings reinforce that simply providing supplements is insufficient unless complemented by behaviour-focused counseling that helps women translate advice into daily food choices.

In this cohort, nearly half of the women were anemic at baseline, reflecting national prevalence data and highlighting ongoing gaps in implementing and adhering to nutritional guidelines. This mirrors the challenges faced by other low- and middle-income countries where nutritional interventions compete with social, economic, and health system barriers.<sup>9</sup> The significant improvement in hemoglobin levels in the intervention group aligns with other quasi-experimental and cohort meta-analyses showing that structured nutrition education can increase adherence to iron-folic acid supplementation and reduce the anemia burden.<sup>9,10</sup> In this study, moderate and mild deficiencies decreased, and normal hemoglobin levels increased substantially among counseled mothers, confirming the added value of intensive nutrition education in a real-world Indian setting. Our results suggest that front-line counseling by trained dietitians can meaningfully strengthen the impact of existing public programmes such as Anemia Mukt Bharat.

Calcium status, an often-overlooked aspect of antenatal nutrition, improved significantly through the intervention, as shown by the dramatic decrease in hypocalcemia. Calcium deficiency is a known risk factor for preeclampsia and fetal bone development issues, yet it remains insufficiently addressed in routine antenatal care in India.<sup>6</sup> The near-universal normalization of calcium levels among the intervention group emphasizes the potential of dietary counseling to address micronutrient gaps that supplementation alone cannot. High rate of hypocalcemia in the control group aligns with previous reports of inadequate dietary calcium intake among Indian women, underscoring the importance of structured nutrition education as a key strategy to close this gap.<sup>14</sup> Importantly, this focus on food-based sources such as milk, curd, and green leafy vegetables makes the approach scalable even in low-resource settings.

Protein intake increased significantly in the intervention group, supporting healthier patterns of weight gain during pregnancy. The steady increase in BMI and weight across

both groups reflects the normal physiological changes of pregnancy. However, the slightly lower weight gain in the intervention group, despite improved protein intake, might indicate a higher-quality diet and better adherence to recommended gestational weight gain ranges, which help protect against adverse outcomes.<sup>15</sup> It is reasonable to presume that counseling may have helped women avoid excess energy from low-nutrient foods while improving intake of nutrient-dense options.

A key finding is the strong link between maternal hemoglobin and calcium levels at birth in the intervention group, a connection not seen among controls. This indicates that nutrition education may lead to combined improvements in maternal biomarkers, thus helping improve pregnancy outcomes. Global research supports these findings: studies from Africa, South Asia, and America show better maternal and neonatal health with nutrition counseling efforts, especially when these are adapted to local food habits and barriers.<sup>9,16-18</sup> However, challenges in implementation vary depending on the context. In India, educational progress is often limited by socioeconomic and cultural factors that affect dietary diversity and supplement use.<sup>4,19</sup> The present findings therefore support integrating structured counseling into existing antenatal care platforms while also investing in community-level strategies to address affordability and intra-household food allocation.

Despite significant improvements in maternal health, the average neonatal birthweight and the rate of LBW showed only modest, statistically insignificant increases. However, they were more favorable in the intervention group, likely due to sample size limitations and the complex, multifactorial nature of fetal growth. Nonetheless, higher third-trimester maternal hemoglobin and calcium levels remained associated with reduced odds of LBW, consistent with global evidence that such improvements reduce the risk of LBW, preterm birth, and neonatal morbidity.<sup>7,20</sup> These trends indicate that scaling such interventions to larger populations and initiating them earlier in pregnancy could yield more pronounced effects on birthweight at the population level.

Mode of delivery was not significantly linked to maternal hemoglobin or calcium levels in either group. Cesarean rates were higher among controls, and higher third-trimester BMI was associated with an increased chance of cesarean, especially in controls. This indicates that while nutritional interventions can improve maternal health, other clinical factors mainly influence delivery method. Nonetheless, slightly lower cesarean rates in intervention group may suggest indirect benefits from improved maternal health and gestational weight management. Future work could examine whether combining nutrition education with broader obstetric risk-reduction strategies can further reduce unnecessary cesarean births.

In conclusion, personalized nutrition education, delivered in a culturally relevant and trimester-specific way,

effectively improves key maternal health indicators in an urban Indian cohort. These results support adding intensive dietary counseling into routine antenatal care, emphasizing its importance in closing ongoing gaps in maternal and child health. The broader implication is the need to include such counseling in routine care programs nationwide, with ongoing efforts to overcome barriers related to education, access, and adherence. Globally, similar intervention programs yield promising results, but more research is needed to confirm long-term benefits on neonatal outcomes and overall population health.

## ACKNOWLEDGEMENTS

Authors would like to thank to all the pregnant women who generously participated in this study and shared their time and information. The nursing staff and postgraduate doctors of the Department of Obstetrics and Gynecology, Hamdard Institute of Medical Sciences and Research (HIMSR), New Delhi.

*Funding: No funding sources*

*Conflict of interest: None declared*

*Ethical approval: The study was approved by the Institutional Ethics Committee Institutional Review Board at Hamdard Institute of Medical Sciences and Research, number HIMSR/IEC/00149/2023, dated 04/10/2023.*

## REFERENCES

1. Girotra S, Mohan N, Malik M, Roy S, Basu S. Prevalence and Determinants of Low Birth Weight in India: Findings From a Nationally Representative Cross-Sectional Survey (2019-21). *Cureus.* 2023;15(3):e36717.
2. Bukhari IA, Alzahrani NM, Alanazi GA, Al-Taleb MA, AlOtaibi HS. Anemia in Pregnancy: Effects on Maternal and Neonatal Outcomes at a University Hospital in Riyadh. *Cureus.* 2022;14(7):e27238.
3. Locks LM, Bhaise S, Dhurde V, Gugel A, Lauer J, Shah M, et al. The prevalence of anemia during pregnancy and its correlates vary by trimester and hemoglobin assessment method in Eastern Maharashtra, India. *Matern Child Nutr.* 2024;20(4):e13684.
4. Vir SC, Suri S. The 5<sup>th</sup> national family health survey of India: a sub-national analysis of child nutrition. *ORF Occasional Paper.* 2021;315.
5. Gerede A, Papasozomenou P, Stavros S, Potiris A, Domali E, Nikolettos N, et al. Calcium Supplementation in Pregnancy: A Systematic Review of Clinical Studies. *Medicina (Kaunas).* 2025;61(7):1195.
6. Zhu Q, Yu Q, Liu M, Wei Y. Effectiveness of calcium supplementation in the prevention of gestational hypertension: A systematic review and meta-analysis of randomised controlled trials. *Pregnancy Hypertension.* 2024;38:101174.
7. Kumsa H, Mislu E, Arage MW, Abate BB, Beriye M, Mehari Reda M, et al. Effects of calcium supplementation on the prevention of preeclampsia: an umbrella review of systematic reviews and meta-analyses. *Front Med (Lausanne).* 2025;12:1434416.
8. Yang J, Chang Q, Tian X, Zhang B, Zeng L, Yan H, et al. Dietary protein intake during pregnancy and birth weight among Chinese pregnant women with low intake of protein. *Nutr Metab (Lond).* 2022;19(1):43.
9. Engidaw MT, Lee P, Fekadu G, Mondal P, Ahmed F. Effect of Nutrition Education During Pregnancy on Iron-Folic Acid Supplementation Compliance and Anemia in Low- and Middle-Income Countries: A Systematic Review and Meta-analysis. *Nutr Rev.* 2025;83(7):e1472-e87.
10. Wakwoya EB, Belachew T, Girma T. Effect of intensive nutrition education and counseling on hemoglobin level of pregnant women in East Shoa zone, Ethiopia: randomized controlled trial. *BMC Pregnancy Childbirth.* 2023;23(1):676.
11. Smitha MV, Indumathi P, Parichha S, Kullu S, Roy S, Gurjar S, et al. Compliance with Iron-Folic Acid supplementation, associated factors, and barriers among postpartum women in Eastern India. *Human Nutrit Metabol.* 2024;35:200237.
12. Nisha MY, Kandasamy S, Ezhil JR, Subbiah P, Davidson PD, Gopal M, et al. Adherence to weekly iron folic acid supplementation and associated factors among adolescent girls-A mixed-method study. *J Family Med Prim Care.* 2024;13(6):2416-24.
13. Bhargava S, Srivastava LM, Manocha A, Kankra M, Rawat S. Micronutrient Deficiencies and Anemia in Urban India-Do We Need Food Fortification? *Indian J Clin Biochem.* 2022;37(2):149-58.
14. Pal R, Bhadada SK, Aggarwal A, Kaur A. Dietary Calcium Intake and Association with Serum Calcium in Healthy Urban North Indian Adults: The Calcium-Chandigarh Urban Bone Epidemiological Study. *Indian J Endocrinol Metabol.* 2024;28(6):596.
15. Al-Bayyari N, Baylin A, Jones A, Hailat M. Higher dietary diversity and appropriate gestational weight gain reduce the risk of low birth weight: a prospective cohort study. *Nutr J.* 2025;24(1):151.
16. Brink LR, Bender TM, Davies R, Luo H, Miketinas D, Shah N, et al. Optimizing Maternal Nutrition: The Importance of a Tailored Approach. *Curr Dev Nutr.* 2022;6(9):nzac118.
17. Marshall NE, Abrams B, Barbour LA, Catalano P, Christian P, Friedman JE, et al. The importance of nutrition in pregnancy and lactation: lifelong consequences. *Am J Obstet Gynecol.* 2022;226(5):607-32.
18. Razzazi A, Griffiths MD, Alimoradi Z. The effect of nutritional education based on the health action process approach (HAPA) on the pregnancy outcomes among malnourished pregnant mothers. *BMC Pregnancy Childbirth.* 2024;24(1):83.
19. Nguyen PH, Neupane S, Pant A, Avula R, Herforth A. Diet Quality Among Mothers and Children in India: Roles of Social and Behavior Change Communication and Nutrition-Sensitive Social Protection Programs. *J Nutr.* 2024;154(9):2784-94.

20. Hendraswari CA, Pramatirta AY, Susiarno H, Hilman D, Zuhairini Y, Sahiratmadja E. The Correlation of Calcium and Hemoglobin Level Among Pregnant Women in  $\geq 35$  Weeks with the Anthropometry of Newborn Babies. *Int J Womens Health.* 2025;17:507-15.

**Cite this article as:** Khan MF, Khurana A, Sharma KA, Nigam A, Alam S, Idris MG, et al. Impact of nutrition education on maternal hemoglobin and calcium levels during pregnancy and their association with birthweight in an Indian cohort. *Int J Reprod Contracept Obstet Gynecol* 2026;15:195-202.