International Journal of Reproduction, Contraception, Obstetrics and Gynecology
Reddy KR et al. Int J Reprod Contracept Obstet Gynecol. 2026 Feb;15(2):789-797

WWW.ijrcog.org pISSN 2320-1770 | eISSN 2320-1789

DOI: https://dx.doi.org/10.18203/2320-1770.1jrcog20260214

Review Article

Artificial intelligence in embryo selection: enhancing precision and
overcoming traditional limitations in in vitro fertilization

K. Reshma Reddy!, Muhammed Asif?, Gunjan Deotale’, V. G. Shanmuga Priya!*

'Department of Life Sciences, School of Sciences, Garden City University, Bengaluru, Karnataka, India
2Cloudnine Fertility, Cloudnine Group of Hospitals, Ludhiana, Punjab, India
3Aira Matrix, Thane, Maharashtra, India

Received: 12 May 2025
Revised: 08 January 2026
Accepted: 09 January 2026

*Correspondence:
V.G. Shanmuga Priya,
E-mail: shanmuga.priya@gcu.edu.in

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under
the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial
use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Identification of embryos with the highest potential for successful implantation is a key step in in-vitro fertilization
(IVF). Traditionally, embryologists visually grade embryos by assessing their morphology and developmental stages.
However, these assessments can differ between embryologists (inter-observer variability) and even when the same
embryologist reviews the same embryo again (intra-observer variability), leading to inconsistent grading and potential
misjudgement of embryo grading. Recent advancements in artificial intelligence (AI) offer a more standardized and
objective approach to human embryo grading. By using machine learning models, Al systems can analyze embryo
images and detect subtle developmental patterns that may not be apparent through visual assessment alone. This review
explores original research studies from 2012 to 2024, that developed Al-driven embryo assessment methods that apply
machine learning models, such as Convolutional Neural Networks (CNNs), which are deep learning models, while
excluding studies involving animal embryos and non-english papers. Our findings from the review indicate that Al can
reduce human error and improve embryo grading consistency for successful IVF. However, integrating Al into clinical
practice presents challenges such as data variability, regulatory barriers, and the need for transparent, explainable Al
models. Future directions include refining Al models to handle diverse datasets ensuring model interpretability for
clinicians, and validating Al systems through large-scale clinical trials to establish their reliability and clinical utility in
embryo selection.

Keywords: Assisted reproductive technology, In vitro fertilization, Artificial intelligence, Deep learning, Convolutional
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INTRODUCTION division, marking the beginning of embryonic

Embryo development is a step-by-step process that plays a
pivotal role in determining the success of in-vitro
fertilization (IVF). Following fertilization in vitro,
embryos progress through distinct stages, each
characterized by specific structural and developmental
features that indicate their potential for successful
implantation.! The zygote is the initial single-cell structure
formed after fertilization, containing the genetic material
from both the sperm and egg. It undergoes its first mitotic

development. During the first 2-3 day’s post-fertilization,
the zygote undergoes a series of mitotic divisions, forming
a multicellular structure with symmetrical blastomeres.
Symmetrical cell division at this stage is a key indicator of
a healthy embryo.! Around day 4, the embryo forms a
compact ball of 16-32 cells called morula. Minimal
fragmentation and consistent cell compaction are essential
for advancing to the blastocyst stage. By day 5-6, the
blastocyst forms a fluid-filled cavity, with two distinct
structures - the inner cell mass (ICM), which will develop
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into the foetus, and the trophectoderm (TE), which
contributes to placental formation. Well-defined ICM and
TE structures are crucial markers of embryo viability.!

A healthy embryo typically exhibits symmetrical cell
division, minimal fragmentation, and well-defined
structures such as the inner cell mass (ICM) and
trophectoderm (TE), which are key indicators of
implantation success.? Figure 2 illustrates the progressive
stages of embryo development, from the zygote to the
hatching blastocyst. Accurate assessment of these features
is essential for selecting embryos with optimal
developmental potential.> Embryo grading is a structured

assessment process conducted to evaluate morphological
characteristics at specific developmental stages to
determine the implantation potential of embryos.
Typically, embryos are graded on Days 3 and 5,
corresponding to the cleavage and blastocyst stages,
respectively. On Day 3, grading focuses on the number of
cells, symmetry, and fragmentation Figure 3 Embryos with
optimal cell division, minimal fragmentation, and well-
formed blastomeres are classified as high-grade and are
prioritized for transfer.* In contrast, embryos with severe
fragmentation or irregular cell sizes are assigned lower
grades, potentially reducing their implantation potential.'

Zygote Day 1 -Embryo Day 2 -Embryo

Day 3-Embryo

Blastocoel

Morula Blastocyst

Figure 1: Morphological stages of embryo development studied in IVF.
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Figure 2: Day wise visualization of embryo development: from oocyte to blastocyst.

Day 5 grading figure 4 is more comprehensive, assessing
the blastocoel cavity, inner cell mass (ICM), and
trophectoderm (TE). The blastocoel cavity is evaluated
based on its size and expansion, ranging from partially
filled is Grade l(lower grade) to fully expanded or
hatching is Grade 6 (highest grade). The ICM is graded
based on the density and compaction of the cells, with
tightly packed, numerous cells considered Grade A
(highest grade), while fewer, loosely packed cells are
graded lower. Similarly, the TE is assessed based on cell
number and uniformity, with densely packed cells
classified as Grade A (highest grade) and sparse or
unevenly distributed cells classified as Grade C. Embryos
with optimal morphology, minimal fragmentation, and
well-defined ICM and TE are considered high-grade and
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are selected for transfer. The goal is to identify embryos
with the best implantation potential to increase the
likelihood of successful pregnancy outcomes. Two
widely recognized grading systems in embryo assessment
are the Gardner grading system and the Istanbul
consensus grading system. The Gardner grading system
is primarily used for blastocyst evaluation, assessing
parameters such as inner cell mass (ICM) quality,
trophectoderm (TE) quality, and blastocoel expansion. In
contrast, the Istanbul consensus grading system® provides
a comprehensive framework for assessing embryos at all
developmental stages, incorporating criteria like cell
symmetry, fragmentation, and blastocoel development.’
Traditionally, grading is performed visually by
embryologists, assessing morphological features under a
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microscope. However, this method is highly subjective
and susceptible to variability between different observers
(inter-observer variability) and even when the same
observer re-evaluates the same embryo (intra-observer
variability), leading to inconsistent grading outcomes.®

Inconsistencies in embryo grading can result in the
selection of suboptimal embryos, potentially lowering
implantation success rates and increasing the emotional
and financial burden on couples.” Al refers to the use of
computer systems capable of simulating human
intelligence to perform tasks such as image recognition,
data analysis, and decision-making.!® In the context of
embryo grading, Al systems utilize machine learning
algorithms, like Convolutional Neural Networks
(CNNs), to analyze embryo images, detect subtle
morphological patterns, and provide consistent grading
assessments.!' Unlike traditional visual grading methods
that are prone to subjective variability, Al systems can
objectively assess features such as cell symmetry,
fragmentation, and ICM and TE structure, thereby
reducing inter-observer and intra-observer variability.'?
Figure 5 illustrates the comprehensive Al-based grading
pipeline, starting from raw microscopy images to multi-
label classification, where images undergo processes like
labeling, annotation, preprocessing, and feature
extraction through deep neural networks.!> The final
output includes a multi-label blastocyst grade (eg.5AB),
which portrays blastocoel expansion, inner cell mass
(ICM) and trophectoderm (TE) quality, providing a more
objective and consistent evaluation framework.'*
Advanced imaging algorithms like IDA Score v 2.0 have
been developed to further enhance grading accuracy by
detecting complex morphological markers that may not
be apparent through conventional assessments. '

This review systematically explores Al-driven methods
for embryo grading, analyzing studies published between
2012 and 2024. The review consolidates findings from
original research, with a focus on algorithm development,
grading criteria, and the clinical integration of Al-based
systems for embryo evaluation.
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Figure 3: Visual representation of day 3 embryo
grading.
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Figure 4: Visual representation of day 5 embryo grading.
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Figure 5: Al-based embryo grading pipeline: from
image input to blastocyst grade prediction.

METHODS
Search strategy

A systematic review was conducted by collecting related
articles from 2012 to 2024. The terms used for collecting
articles were automated embryo selection, automated
embryo grading, embryo classification using deep learning
(DL) and embryo classification using machine learning
(ML) models. A Boolean search query — ("embryo
grading" OR "blastocyst grading") AND ("deep learning"
OR "CNN") AND ("IVF" OR "ART")—filtered relevant
studies as mentioned in Table 1.

Table 1: Search keywords and boolean operators.

Categor Keywords used Boolean operators

Embryolprading afg:gz I;gtf'admg, Blastocyst grading," "Embryo Or

Machine learning .Deep learn'lvng, Machine learning," "Artificial Or
intelligence

Computer vision "Image analysis," "Convolutional neural networks Or

P (CNN)," "Automated segmentation"

"In vitro fertilization," "Assisted reproductive technology

IVF (ART)" Or

. ("Embryo grading" or "Blastocyst grading") and ("Deep
Final query learning" or "CNN") and ("IVF" or "ART") A
Selection process state-of-the-art classification results.'®* MLP-based models

Collected articles were screened in stages based on
inclusion criteria: published between 20122024, focused
on Al-driven embryo grading (DL/ML), reported metrics
(accuracy, sensitivity, specificity, AUC), and Al methods.
Excluded were non-human/animal embryo studies, non-
English papers, reviews, meta-analysis, and studies
lacking original data or metrics.

Machine learning to cutting-edge deep learning models

Machine learning (ML) is a branch of artificial intelligence
(AI) that enables systems to learn patterns from data and
make predictions or decisions without explicit
programming.'® Deep learning (DL) is a specialized subset
of ML that uses artificial neural networks with many layers
(deep neural networks, or DNNs) to automatically extract
features from raw data removing the need for manual
feature engineering. While some define DL as networks
with 3-4 layers, modern models often have dozens or
hundreds of layers. Among DL architectures,
Convolutional Neural Networks (CNNs) are especially
popular for image processing, their ability to learn spatial
hierarchies and patterns.!” However, DL for image
analysis is not limited to CNNs. Emerging non-CNN
models have shown competitive or superior performance
in many tasks. Vision Transformers (VIT) apply
transformer architectures to image patches, achieving
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like MLP-Mixer replace convolutions entirely with fully
connected layers. Capsule Networks (Caps Nets) aim to
capture spatial hierarchies without relying on traditional
pooling.'” Together, these advances highlight the evolving
landscape of deep learning in computer vision and
beyond.?°

Deep learning applications in embryo image analysis

Deep learning has emerged as a powerful tool in human
embryo image analysis, aiming to improve selection
accuracy in assisted reproductive technologies.'®
Researchers have explored a wide range of models, dataset
sizes, and stages of embryonic development.!® used
Efficient Net variants, Swin Transformers, STORK, and
Alex Net on 20,000 blastocyst and cleavage-stage images,
achieving ~99.5% accuracy. Charnpinyo et al applied a
deep learning model to blastocyst-stage images with 65%
accuracy, 74.29% sensitivity, and an AUC of 0.72.
Ahlstrom et al (2023) used Ida Score v2.0 on 1,786
cleavage-stage images, reporting AUCs around 0.627,
while Theilgaard Lassen et al used the same model on
181,428 images, achieving AUCs up to 0.954 on later
developmental days. Arsalan et al developed MASS-Net
for segmenting blastocyst regions, reporting mean Jaccard
indices ranging from ~79% to ~89%. Loewke et al
achieved an AUC of 0.74 on 5,923 images with a deep
learning model, while Wang et al used VGG-16 with Grad-
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CAM on 11,275 images to reach an AUC of 0.936,
highlighting interpretability. Septiandri et al achieved
91.79% accuracy using ResNet50 on 1,084 images. Rad et
al used a hierarchical neural network (HiNN) on 235
images, achieving 95.6% accuracy with strong precision
and recall. Saeedi et al reported accuracies over 86% for
specific blastocyst regions on 211 images, while earlier
work like Yee et al and Filho et al showed early promise,
with the latter achieving 92% accuracy using SVMs on 93
images. Liao employed Faster R-CNN with Crowd-NMS
on 94 images, achieving precision of 99.4%, recall of
91.21%, and mAP of 95.31%. Alkindy combined
ResNet50 and Xception to achieve 98% accuracy on
cleavage-stage embryos. Farias used Dice coefficients to
segment over 2,000 blastocyst images, achieving values
from 0.54 to 0.96 across regions. Ishaq developed FSBS-
Net, achieving 87.26% accuracy on 200 images. Wang
introduced 12 C Net with 94.14% accuracy and an 85.25%
Jaccard index. Berntsen applied Ida Score v1.0 to 115,832
images, with AUCs of 0.63—0.69. Arsalan also proposed
SSS-Net, though detailed metrics were not provided. Other
studies include Bormann achieving 70% accuracy on

1,231 images with a CNN; VerMilyea using the Life
Whisperer Al model with 64.3% accuracy on 8,886
images; Au (2020) developing Blast-Net; and Rad using
U-Net on 592 images for 96.9% accuracy. Rad (2019) also
reported 82.85% with Blast-Net, while Wu achieved
74.14% accuracy on 3,601 cleavage-stage images. Harun
used DNNs to segment ICM and TE regions with
exceptional accuracy over 98%, plus high precision, recall,
Dice, and Jaccard scores. Kragh applied RNNs on 851
images, achieving 97.5% accuracy. Kheradmand used
Fully Convolutional Networks on 8,460 images but with a
lower Jaccard index of 28%, showing early challenges.
Lagalla and Singh also contributed, with Singh reporting
segmentation accuracy up to 91.7% by grade. Altogether,
these studies highlight the diverse architectures from
classic CNNs and U-Nets to cutting-edge transformers and
object detection models used to analyze embryo images.
By improving classification accuracy, segmentation
precision, and interpretability, these models support
embryologists in making consistent, data-driven decisions,
ultimately aiming to improve IVF success rates and patient
outcomes.

Table 2: Comparative table of DL approaches for embryo image analysis.

‘ Author (year) Model Embryo Embryo stage Reported metrics ‘
images
Efficientnet variant, Blastocyst and
Ou et al?® (2023) swin transformer, 20,000 y Accuracy: ~99.5%
cleavage
stork, alexnet
Accuracy: 65%,
Charnpinyo et al* (2023) DL model Blastocyst sensitivity: 74.29%, AUC:
0.72
Ahlstrom et al*° (2023) IDAscore v2.0 1,786 Cleavage AUC: 0.627 and 0.607
. Blastocyst and AUC: day 2: 0.861, day 3:
31 5
Theilgaard Lassen et al’’ (2023)  IDAscore v2.0 181,428 cleavage 0.872, day 5+ 0.954
TE: 79.08%, ZP: 84.69%,
Arsalan et al’? (2022) MASS-net Na Blastocyst ICM: 85.88%, BL:
89.28%
Loewke et al*3 (2022) DL model 5,923 Blastocyst AUC: 0.74
Wang et al** (2021) ‘C’SS['M’ grad- 11275  Blastocyst AUC: 0.936
Septiandri et al’*’ (2020) Resnet50 1,084 Blastocyst Accuracy: 91.79%
Rad et al*® (2018) HINN 235 Blastocyst Accuracy: 95.6%
. Accuracy: 86.6% (TE)
37 5
Saeedi et al’’ (2017) DL model 211 Blastocyst 91.3% (ICM)
Yee et al*® (2013) DL model 20 Blastocyst —
Filho et al*® (2012) SVM 93 Blastocyst Accuracy: 0.92
Faster R-CNN Precision: 0.9940, recall:
. 40 > >
Liao et al* (2024) crowd-NMS 94 Blastocyst 09121
Alkindy et al*! (2023) Resnet50, xception  — Cleavage Accuracy: 98.00%
Farias et al*? (2023) i 2,132 Blastocyst DSC: all pixels 0.87
segmentation
Ishaq et al** (2023) FSBS-net 200 Blastocyst Accuracy: 87.26%
Wang et al** (2022) [2CNET — Blastocyst Accuracy: 94.14%
Berntsen et al** (2022) IDAscore v1.0 115,832 ~ Blastocystand 50 63 6 69
cleavage
Arsalan et al*® (2022) SSS-net — Blastocyst —
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Author (year) Model !Embryo Embryo stage Reported metrics
images

Bormann et al*’(2020) CNN 1,231 Blastocyst Accuracy: 0.70

Vermilyea et al*® (2020) Life whisperer Al 8,886 Blastocyst Accuracy: 64.3%

Au et al**(2020) Blast-net 415 Blastocyst —

Rad et al** (2020) U-net 592 Blastocyst Accuracy: 96.9%

Rad et al’! (2019) Blast-net — Blastocyst Accuracy: 82.85%

Wu et al¥? (2021) DL 3,601 Cleavage Accuracy: 74.14%

Harun et al>} (2019) DNN 249 Blastocyst Dice (ICM): 94.3%

Kragh et al** (2019) RNN 851 Blastocyst Accuracy: 97.5%

Kheradmand et al*s (2017) FCN 8,460 Blastocyst Jaccard: 28%

Kheradmand et al*® (2016) Neural network — Blastocyst —

Lagalla et al¥’ (2015) Xception 124 Blastocyst —

Singh et al*® (2014) DL 85 Blastocyst gée‘%n_lgrllt%zm accuracy:

Ethical considerations

Al in embryo grading brings ethical issues. Firstly, dataset
bias is a problem—many datasets miss out on diverse
patient groups, so Al might work well only for some and
flop for others, making it less accurate and unfair. This can
widen gaps in fertility treatment. We need varied, all-
inclusive datasets for fairer, stronger Al models. Secondly,
patient privacy is at risk. Embryo images and records are
super personal, but studies often skip how they hide
identities or lock data safely with things like encryption.
Weak protection can break trust in IVF, so strict safety
steps are a must. Lastly, patients need clear consent and
understanding they should know how Al picks embryos,
keep control over choices, and not just follow a mystery
“black box” Al. Fairness, privacy, consent, and clear
explanations are key for using Al responsibly in embryo
grading.?

Clinical applicability issues

Al could transform embryo grading in IVF, but bringing it
to clinics is not easy. Regulatory roadblocks, like FDA
approval, demand on solid trials linking AI’s grading
accuracy to live births, etc. may slow the progress. Doubt
of clinicians and embryologists whether Al can beat their
skill sets, or adapt to each patient’s quirks, and its “black
box” nature and narrow datasets fuel the hesitation. In an
article reviewed, it is highlighted that real-world results are
patchy, with a trial across three clinics showing an Al
model matching embryologists’ picks over 83% consistent
grading, while two clinics successfully used Al with time-
lapse data for reliable outcomes. Still, these are small
steps. Most Al tools boast lab accuracy but lack the big,
real-clinic evidence tying them to pregnancies.? For Al to
hit the mainstream, it needs tougher validation, clinician
trust, and clear, outcome driven studies.?’

Future directions
The future of Al in embryo grading depends on sharper

tech and solid clinical proof. Boosting tools like
Convolutional Neural Networks (CNNs) past their 99.5%
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accuracy making them faster and adaptable to diverse data
which is key, but so are randomized controlled trials
(RCTs) to show Al-picked embryos up to live birth rates,
not just lab scores. As of March 2025, the focus tilts toward
tech upgrades over clinical validation but both need equal
push. Patient trust also matters; studies focusing on
people’s confidence level on Al for something as personal
as embryo selection are thin. Research into clear
communication and patient involvement could lift
confidence, and without it, adoption of Al might stall the
progress. Better algorithms, hard clinical evidence, and
keeping patients on board with AI’s role is the need of the
hour.*®

DISCUSSION

This review highlights the growing role of Al in embryo
grading and selection, demonstrating its potential to
address long-standing limitations of conventional
morphological assessment in IVF. Across studies
published between 2012 and 2024, Al-based systems
particularly deep learning models such as convolutional
neural networks (CNNs) consistently showed improved
objectivity, reproducibility, and predictive performance
compared to traditional visual grading by embryologists.

A key finding of this review is that Al-driven embryo
assessment significantly reduces inter- and intra-observer
variability, a major drawback of conventional
morphology-based grading. Traditional embryo evaluation
relies heavily on subjective interpretation of features such
as cell symmetry, fragmentation, inner cell mass (ICM),
and trophectoderm (TE) quality, leading to inconsistencies
even among experienced embryologists.?° In contrast,
studies such as Bormann et al and Ver Milyea et al
demonstrated that Al systems provide consistent grading
across large datasets, supporting earlier observations that
algorithmic  assessments can outperform human
consistency without fatigue or bias.?!

Another important observation is the progressive

improvement in predictive performance as Al models
evolved from early machine learning approaches to
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modern deep learning architectures. Early studies,
including Filho et al and Yee et al relied on relatively small
datasets and conventional classifiers such as support
vector machines, achieving promising but limited
accuracy. Subsequent advances in CNN-based models
enabled automatic feature extraction from raw embryo
images, resulting in substantially higher performance. For
example, Khosravi et al and Wang et al reported high AUC
values (>0.90) for blastocyst viability prediction, while
recent large-scale implementations such as Ida Score v 2.0
demonstrated strong discriminatory power across different
developmental stages when trained on hundreds of
thousands of images.

The review also reveals that Al performance improves
markedly with increased dataset size and diversity. Models
trained on large, multicenter datasets generally showed
superior generalizability compared to those developed
using small, single-center image collections. This finding
aligns with previous work emphasizing that limited and
homogeneous datasets restrict the external validity of Al
tools in reproductive medicine.>* Recent efforts to
incorporate synthetic data and annotated benchmark
datasets represent important steps toward overcoming data
scarcity and improving model robustness.>’

Despite these advances, this review identifies a persistent
gap between laboratory-level AI performance and
demonstrated clinical benefit. While many studies report
high accuracy, sensitivity, or AUC values, relatively few
link Al-based embryo grading directly to clinically
meaningful outcomes such as implantation, pregnancy, or
live birth rates. This concern has been echoed in earlier
evaluations of Al in IVF, which caution that predictive
accuracy alone is insufficient without prospective clinical
validation.®® The limited number of randomized or
multicenter clinical trials remains a significant barrier to
widespread clinical adoption.

In comparison with conventional and time-lapse-based
embryo assessment, Al appears to complement rather than
replace embryologist expertise. Several studies suggest
that Al-assisted grading performs comparably to expert
embryologists and may serve as a decision-support tool
rather than an autonomous selector.*® This hybrid
approach aligns with the Istanbul Consensus updates,
which emphasize standardized assessment frameworks
while acknowledging the evolving role of automated
technologies in embryology laboratories.*

Overall, the findings of this review are consistent with
previous literature indicating that Al has the potential to
enhance precision, standardization, and scalability in
embryo selection. However, translating these technical
advances into routine clinical practice requires robust
prospective trials, transparent and explainable Al models,
and careful consideration of ethical and regulatory
challenges. Addressing these issues will be essential to
ensure that Al-based embryo grading not only improves
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laboratory metrics but also leads to tangible improvements
in IVF outcomes.

CONCLUSION

This review consolidates and critically evaluates over a
decade of original research on artificial intelligence driven
embryo grading, demonstrating that Al has the potential to
substantially enhance precision, objectivity, and
consistency in embryo selection compared with
conventional morphology-based assessment in IVF. By
synthesizing evidence from diverse deep learning
architectures, developmental stages, and dataset scales,
this study advances current understanding by highlighting
not only the technical strengths of Al systems such as
reduced observer variability and improved predictive
performance but also the translational gaps that limit their
routine clinical adoption. Importantly, the review
underscores that while AI models increasingly achieve
expert-level grading accuracy, their true clinical value
depends on robust validation against meaningful outcomes
such as implantation and live birth, along with
transparency, ethical safeguards, and clinician trust. By
integrating technical performance, clinical applicability,
and ethical considerations into a unified framework, this
review provides a comprehensive reference for
researchers, clinicians, and policymakers, and offers a
clear roadmap for the responsible integration of Al into
embryo selection to improve IVF outcomes.
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