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INTRODUCTION 

Embryo development is a step-by-step process that plays a 

pivotal role in determining the success of in-vitro 

fertilization (IVF). Following fertilization in vitro, 

embryos progress through distinct stages, each 

characterized by specific structural and developmental 

features that indicate their potential for successful 

implantation.1 The zygote is the initial single-cell structure 

formed after fertilization, containing the genetic material 

from both the sperm and egg. It undergoes its first mitotic 

division, marking the beginning of embryonic 

development. During the first 2-3 day’s post-fertilization, 

the zygote undergoes a series of mitotic divisions, forming 

a multicellular structure with symmetrical blastomeres. 

Symmetrical cell division at this stage is a key indicator of 

a healthy embryo.1 Around day 4, the embryo forms a 

compact ball of 16-32 cells called morula. Minimal 

fragmentation and consistent cell compaction are essential 

for advancing to the blastocyst stage. By day 5-6, the 

blastocyst forms a fluid-filled cavity, with two distinct 

structures - the inner cell mass (ICM), which will develop 
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ABSTRACT 

Identification of embryos with the highest potential for successful implantation is a key step in in-vitro fertilization 

(IVF). Traditionally, embryologists visually grade embryos by assessing their morphology and developmental stages. 

However, these assessments can differ between embryologists (inter-observer variability) and even when the same 

embryologist reviews the same embryo again (intra-observer variability), leading to inconsistent grading and potential 

misjudgement of embryo grading. Recent advancements in artificial intelligence (AI) offer a more standardized and 

objective approach to human embryo grading. By using machine learning models, AI systems can analyze embryo 

images and detect subtle developmental patterns that may not be apparent through visual assessment alone. This review 

explores original research studies from 2012 to 2024, that developed AI-driven embryo assessment methods that apply 

machine learning models, such as Convolutional Neural Networks (CNNs), which are deep learning models, while 

excluding studies involving animal embryos and non-english papers. Our findings from the review indicate that AI can 

reduce human error and improve embryo grading consistency for successful IVF. However, integrating AI into clinical 

practice presents challenges such as data variability, regulatory barriers, and the need for transparent, explainable AI 

models. Future directions include refining AI models to handle diverse datasets ensuring model interpretability for 

clinicians, and validating AI systems through large-scale clinical trials to establish their reliability and clinical utility in 

embryo selection. 

Keywords: Assisted reproductive technology, In vitro fertilization, Artificial intelligence, Deep learning, Convolutional 

neural networks, Embryo grading, Predictive analytics 
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into the foetus, and the trophectoderm (TE), which 

contributes to placental formation. Well-defined ICM and 

TE structures are crucial markers of embryo viability.1 

A healthy embryo typically exhibits symmetrical cell 

division, minimal fragmentation, and well-defined 

structures such as the inner cell mass (ICM) and 

trophectoderm (TE), which are key indicators of 

implantation success.2 Figure 2 illustrates the progressive 

stages of embryo development, from the zygote to the 

hatching blastocyst. Accurate assessment of these features 

is essential for selecting embryos with optimal 

developmental potential.3 Embryo grading is a structured 

assessment process conducted to evaluate morphological 

characteristics at specific developmental stages to 

determine the implantation potential of embryos. 

Typically, embryos are graded on Days 3 and 5, 

corresponding to the cleavage and blastocyst stages, 

respectively. On Day 3, grading focuses on the number of 

cells, symmetry, and fragmentation Figure 3 Embryos with 

optimal cell division, minimal fragmentation, and well-

formed blastomeres are classified as high-grade and are 

prioritized for transfer.4 In contrast, embryos with severe 

fragmentation or irregular cell sizes are assigned lower 

grades, potentially reducing their implantation potential.1 

 

Figure 1: Morphological stages of embryo development studied in IVF. 

 

Figure 2: Day wise visualization of embryo development: from oocyte to blastocyst.

Day 5 grading figure 4 is more comprehensive, assessing 

the blastocoel cavity, inner cell mass (ICM), and 

trophectoderm (TE). The blastocoel cavity is evaluated 

based on its size and expansion, ranging from partially 

filled is Grade 1(lower grade) to fully expanded or 

hatching is Grade 6 (highest grade). The ICM is graded 

based on the density and compaction of the cells, with 

tightly packed, numerous cells considered Grade A 

(highest grade), while fewer, loosely packed cells are 

graded lower. Similarly, the TE is assessed based on cell 

number and uniformity, with densely packed cells 

classified as Grade A (highest grade) and sparse or 

unevenly distributed cells classified as Grade C. Embryos 

with optimal morphology, minimal fragmentation, and 

well-defined ICM and TE are considered high-grade and 

are selected for transfer. The goal is to identify embryos 

with the best implantation potential to increase the 

likelihood of successful pregnancy outcomes. Two 

widely recognized grading systems in embryo assessment 

are the Gardner grading system and the Istanbul 

consensus grading system. The Gardner grading system 

is primarily used for blastocyst evaluation, assessing 

parameters such as inner cell mass (ICM) quality, 

trophectoderm (TE) quality, and blastocoel expansion. In 

contrast, the Istanbul consensus grading system6 provides 

a comprehensive framework for assessing embryos at all 

developmental stages, incorporating criteria like cell 

symmetry, fragmentation, and blastocoel development.7 

Traditionally, grading is performed visually by 

embryologists, assessing morphological features under a 
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microscope. However, this method is highly subjective 

and susceptible to variability between different observers 

(inter-observer variability) and even when the same 

observer re-evaluates the same embryo (intra-observer 

variability), leading to inconsistent grading outcomes.8  

Inconsistencies in embryo grading can result in the 

selection of suboptimal embryos, potentially lowering 

implantation success rates and increasing the emotional 

and financial burden on couples.9 AI refers to the use of 

computer systems capable of simulating human 

intelligence to perform tasks such as image recognition, 

data analysis, and decision-making.10 In the context of 

embryo grading, AI systems utilize machine learning 

algorithms, like Convolutional Neural Networks 

(CNNs), to analyze embryo images, detect subtle 

morphological patterns, and provide consistent grading 

assessments.11 Unlike traditional visual grading methods 

that are prone to subjective variability, AI systems can 

objectively assess features such as cell symmetry, 

fragmentation, and ICM and TE structure, thereby 

reducing inter-observer and intra-observer variability.12 

Figure 5 illustrates the comprehensive AI-based grading 

pipeline, starting from raw microscopy images to multi-

label classification, where images undergo processes like 

labeling, annotation, preprocessing, and feature 

extraction through deep neural networks.13 The final 

output includes a multi-label blastocyst grade (eg.5AB), 

which portrays blastocoel expansion, inner cell mass 

(ICM) and trophectoderm (TE) quality, providing a more 

objective and consistent evaluation framework.14 

Advanced imaging algorithms like IDA Score v 2.0 have 

been developed to further enhance grading accuracy by 

detecting complex morphological markers that may not 

be apparent through conventional assessments.15 

This review systematically explores AI-driven methods 

for embryo grading, analyzing studies published between 

2012 and 2024. The review consolidates findings from 

original research, with a focus on algorithm development, 

grading criteria, and the clinical integration of AI-based 

systems for embryo evaluation. 

 

Figure 3: Visual representation of day 3 embryo 

grading. 

 

Figure 4: Visual representation of day 5 embryo grading. 
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Figure 5: AI-based embryo grading pipeline: from 

image input to blastocyst grade prediction. 

METHODS 

Search strategy 

A systematic review was conducted by collecting related 

articles from 2012 to 2024. The terms used for collecting 

articles were automated embryo selection, automated 

embryo grading, embryo classification using deep learning 

(DL) and embryo classification using machine learning 

(ML) models. A Boolean search query — ("embryo 

grading" OR "blastocyst grading") AND ("deep learning" 

OR "CNN") AND ("IVF" OR "ART")—filtered relevant 

studies as mentioned in Table 1.  

Table 1: Search keywords and boolean operators. 

Category Keywords used Boolean operators 

Embryo grading 
"Embryo grading," "Blastocyst grading," "Embryo 

assessment" 
Or 

Machine learning 
"Deep learning," "Machine learning," "Artificial 

intelligence" 
Or 

Computer vision 
"Image analysis," "Convolutional neural networks 

(CNN)," "Automated segmentation" 
Or 

IVF 
"In vitro fertilization," "Assisted reproductive technology 

(ART)" 
Or 

Final query 
("Embryo grading" or "Blastocyst grading") and ("Deep 

learning" or "CNN") and ("IVF" or "ART") 
And 

Selection process 

Collected articles were screened in stages based on 

inclusion criteria: published between 2012–2024, focused 

on AI-driven embryo grading (DL/ML), reported metrics 

(accuracy, sensitivity, specificity, AUC), and AI methods. 

Excluded were non-human/animal embryo studies, non-

English papers, reviews, meta-analysis, and studies 

lacking original data or metrics. 

Machine learning to cutting-edge deep learning models 

Machine learning (ML) is a branch of artificial intelligence 

(AI) that enables systems to learn patterns from data and 

make predictions or decisions without explicit 

programming.16 Deep learning (DL) is a specialized subset 

of ML that uses artificial neural networks with many layers 

(deep neural networks, or DNNs) to automatically extract 

features from raw data removing the need for manual 

feature engineering. While some define DL as networks 

with 3-4 layers, modern models often have dozens or 

hundreds of layers. Among DL architectures, 

Convolutional Neural Networks (CNNs) are especially 

popular for image processing, their ability to learn spatial 

hierarchies and patterns.17 However, DL for image 

analysis is not limited to CNNs. Emerging non-CNN 

models have shown competitive or superior performance 

in many tasks. Vision Transformers (VIT) apply 

transformer architectures to image patches, achieving 

state-of-the-art classification results.18 MLP-based models 

like MLP-Mixer replace convolutions entirely with fully 

connected layers. Capsule Networks (Caps Nets) aim to 

capture spatial hierarchies without relying on traditional 

pooling.19 Together, these advances highlight the evolving 

landscape of deep learning in computer vision and 

beyond.20 

Deep learning applications in embryo image analysis 

Deep learning has emerged as a powerful tool in human 

embryo image analysis, aiming to improve selection 

accuracy in assisted reproductive technologies.18 

Researchers have explored a wide range of models, dataset 

sizes, and stages of embryonic development.19 used 

Efficient Net variants, Swin Transformers, STORK, and 

Alex Net on 20,000 blastocyst and cleavage-stage images, 

achieving ~99.5% accuracy. Charnpinyo et al applied a 

deep learning model to blastocyst-stage images with 65% 

accuracy, 74.29% sensitivity, and an AUC of 0.72. 

Ahlström et al (2023) used Ida Score v2.0 on 1,786 

cleavage-stage images, reporting AUCs around 0.627, 

while Theilgaard Lassen et al used the same model on 

181,428 images, achieving AUCs up to 0.954 on later 

developmental days. Arsalan et al developed MASS-Net 

for segmenting blastocyst regions, reporting mean Jaccard 

indices ranging from ~79% to ~89%. Loewke et al 

achieved an AUC of 0.74 on 5,923 images with a deep 

learning model, while Wang et al used VGG-16 with Grad-
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CAM on 11,275 images to reach an AUC of 0.936, 

highlighting interpretability. Septiandri et al achieved 

91.79% accuracy using ResNet50 on 1,084 images. Rad et 

al used a hierarchical neural network (HiNN) on 235 

images, achieving 95.6% accuracy with strong precision 

and recall. Saeedi et al reported accuracies over 86% for 

specific blastocyst regions on 211 images, while earlier 

work like Yee et al and Filho et al showed early promise, 

with the latter achieving 92% accuracy using SVMs on 93 

images. Liao employed Faster R-CNN with Crowd-NMS 

on 94 images, achieving precision of 99.4%, recall of 

91.21%, and mAP of 95.31%. Alkindy combined 

ResNet50 and Xception to achieve 98% accuracy on 

cleavage-stage embryos. Farias used Dice coefficients to 

segment over 2,000 blastocyst images, achieving values 

from 0.54 to 0.96 across regions. Ishaq developed FSBS-

Net, achieving 87.26% accuracy on 200 images. Wang 

introduced I2 C Net with 94.14% accuracy and an 85.25% 

Jaccard index. Berntsen applied Ida Score v1.0 to 115,832 

images, with AUCs of 0.63–0.69. Arsalan also proposed 

SSS-Net, though detailed metrics were not provided. Other 

studies include Bormann achieving 70% accuracy on 

1,231 images with a CNN; VerMilyea using the Life 

Whisperer AI model with 64.3% accuracy on 8,886 

images; Au (2020) developing Blast-Net; and Rad using 

U-Net on 592 images for 96.9% accuracy. Rad (2019) also 

reported 82.85% with Blast-Net, while Wu achieved 

74.14% accuracy on 3,601 cleavage-stage images. Harun 

used DNNs to segment ICM and TE regions with 

exceptional accuracy over 98%, plus high precision, recall, 

Dice, and Jaccard scores. Kragh applied RNNs on 851 

images, achieving 97.5% accuracy. Kheradmand used 

Fully Convolutional Networks on 8,460 images but with a 

lower Jaccard index of 28%, showing early challenges. 

Lagalla and Singh also contributed, with Singh reporting 

segmentation accuracy up to 91.7% by grade. Altogether, 

these studies highlight the diverse architectures from 

classic CNNs and U-Nets to cutting-edge transformers and 

object detection models used to analyze embryo images. 

By improving classification accuracy, segmentation 

precision, and interpretability, these models support 

embryologists in making consistent, data-driven decisions, 

ultimately aiming to improve IVF success rates and patient 

outcomes. 

Table 2:  Comparative table of DL approaches for embryo image analysis. 

Author (year) Model 
Embryo 

images 
Embryo stage Reported metrics 

Ou et al28 (2023) 

Efficientnet variant, 

swin transformer, 

stork, alexnet 

20,000 
Blastocyst and 

cleavage 
Accuracy: ~99.5% 

Charnpinyo et al29 (2023) DL model Na Blastocyst 

Accuracy: 65%, 

sensitivity: 74.29%, AUC: 

0.72 

Ahlström et al30 (2023) IDAscore v2.0 1,786 Cleavage AUC: 0.627 and 0.607 

Theilgaard Lassen et al31 (2023) IDAscore v2.0 181,428 
Blastocyst and 

cleavage 

AUC: day 2: 0.861, day 3: 

0.872, day 5+: 0.954 

Arsalan et al32 (2022) MASS-net Na Blastocyst 

TE: 79.08%, ZP: 84.69%, 

ICM: 85.88%, BL: 

89.28% 

Loewke et al33 (2022) DL model 5,923 Blastocyst AUC: 0.74 

Wang et al34 (2021) 
VGG-16, grad-

CAM 
11,275 Blastocyst AUC: 0.936 

Septiandri et al35 (2020) Resnet50 1,084 Blastocyst Accuracy: 91.79% 

Rad et al36 (2018) HINN 235 Blastocyst Accuracy: 95.6% 

Saeedi et al37 (2017) DL model 211 Blastocyst 
Accuracy: 86.6% (TE), 

91.3% (ICM) 

Yee et al38 (2013) DL model 20 Blastocyst — 

Filho et al39 (2012) SVM 93 Blastocyst Accuracy: 0.92 

Liao et al40 (2024) 
Faster R-CNN, 

crowd-NMS 
94 Blastocyst 

Precision: 0.9940, recall: 

0.9121 

Alkindy et al41 (2023) Resnet50, xception — Cleavage Accuracy: 98.00% 

Farias et al42 (2023) 
Dice-based 

segmentation 
2,132 Blastocyst DSC: all pixels 0.87 

Ishaq et al43 (2023) FSBS-net 200 Blastocyst Accuracy: 87.26% 

Wang et al44 (2022) I2CNET — Blastocyst Accuracy: 94.14% 

Berntsen et al45 (2022) IDAscore v1.0 115,832 
Blastocyst and 

cleavage 
AUC: 0.63, 0.69 

Arsalan et al46 (2022) SSS-net — Blastocyst — 

Continued. 



Reddy KR et al. Int J Reprod Contracept Obstet Gynecol. 2026 Feb;15(2):789-797 

International Journal of Reproduction, Contraception, Obstetrics and Gynecology                                     Volume 15 · Issue 2    Page 794 

Author (year) Model 
Embryo 

images 
Embryo stage Reported metrics 

Bormann et al47(2020) CNN 1,231 Blastocyst Accuracy: 0.70 

Vermilyea et al48 (2020) Life whisperer AI 8,886 Blastocyst Accuracy: 64.3% 

Au et al49(2020) Blast-net 415 Blastocyst — 

Rad et al50 (2020) U-net 592 Blastocyst Accuracy: 96.9% 

Rad et al51 (2019) Blast-net — Blastocyst Accuracy: 82.85% 

Wu et al52 (2021) DL 3,601 Cleavage Accuracy: 74.14% 

Harun et al53 (2019) DNN 249 Blastocyst Dice (ICM): 94.3% 

Kragh et al54 (2019) RNN 851 Blastocyst Accuracy: 97.5% 

Kheradmand et al55 (2017) FCN 8,460 Blastocyst Jaccard: 28% 

Kheradmand et al56 (2016) Neural network — Blastocyst — 

Lagalla et al57 (2015) Xception 124 Blastocyst — 

Singh et al58 (2014) DL 85 Blastocyst 
Segmentation accuracy: 

84.6–91.7% 

Ethical considerations 

AI in embryo grading brings ethical issues. Firstly, dataset 
bias is a problem—many datasets miss out on diverse 
patient groups, so AI might work well only for some and 
flop for others, making it less accurate and unfair. This can 
widen gaps in fertility treatment. We need varied, all-
inclusive datasets for fairer, stronger AI models. Secondly, 
patient privacy is at risk. Embryo images and records are 
super personal, but studies often skip how they hide 
identities or lock data safely with things like encryption. 
Weak protection can break trust in IVF, so strict safety 
steps are a must. Lastly, patients need clear consent and 
understanding they should know how AI picks embryos, 
keep control over choices, and not just follow a mystery 
“black box” AI. Fairness, privacy, consent, and clear 
explanations are key for using AI responsibly in embryo 
grading.25 

Clinical applicability issues  

AI could transform embryo grading in IVF, but bringing it 
to clinics is not easy. Regulatory roadblocks, like FDA 
approval, demand on solid trials linking AI’s grading 
accuracy to live births, etc. may slow the progress. Doubt 
of clinicians and embryologists whether AI can beat their 
skill sets, or adapt to each patient’s quirks, and its “black 
box” nature and narrow datasets fuel the hesitation. In an 
article reviewed, it is highlighted that real-world results are 
patchy, with a trial across three clinics showing an AI 
model matching embryologists’ picks over 83% consistent 
grading, while two clinics successfully used AI with time-
lapse data for reliable outcomes. Still, these are small 
steps. Most AI tools boast lab accuracy but lack the big, 
real-clinic evidence tying them to pregnancies.26 For AI to 
hit the mainstream, it needs tougher validation, clinician 
trust, and clear, outcome driven studies.27 

Future directions 

The future of AI in embryo grading depends on sharper 
tech and solid clinical proof. Boosting tools like 
Convolutional Neural Networks (CNNs) past their 99.5% 

accuracy making them faster and adaptable to diverse data 
which is key, but so are randomized controlled trials 
(RCTs) to show AI-picked embryos up to live birth rates, 
not just lab scores. As of March 2025, the focus tilts toward 
tech upgrades over clinical validation but both need equal 
push. Patient trust also matters; studies focusing on 
people’s confidence level on AI for something as personal 
as embryo selection are thin. Research into clear 
communication and patient involvement could lift 
confidence, and without it, adoption of AI might stall the 
progress. Better algorithms, hard clinical evidence, and 
keeping patients on board with AI’s role is the need of the 
hour.48 

DISCUSSION 

This review highlights the growing role of AI in embryo 
grading and selection, demonstrating its potential to 
address long-standing limitations of conventional 
morphological assessment in IVF. Across studies 
published between 2012 and 2024, AI-based systems 
particularly deep learning models such as convolutional 
neural networks (CNNs) consistently showed improved 
objectivity, reproducibility, and predictive performance 
compared to traditional visual grading by embryologists. 

A key finding of this review is that AI-driven embryo 
assessment significantly reduces inter- and intra-observer 
variability, a major drawback of conventional 
morphology-based grading. Traditional embryo evaluation 
relies heavily on subjective interpretation of features such 
as cell symmetry, fragmentation, inner cell mass (ICM), 
and trophectoderm (TE) quality, leading to inconsistencies 
even among experienced embryologists.30 In contrast, 
studies such as Bormann et al and Ver Milyea et al 
demonstrated that AI systems provide consistent grading 
across large datasets, supporting earlier observations that 
algorithmic assessments can outperform human 
consistency without fatigue or bias.31 

Another important observation is the progressive 

improvement in predictive performance as AI models 

evolved from early machine learning approaches to 
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modern deep learning architectures. Early studies, 

including Filho et al and Yee et al relied on relatively small 

datasets and conventional classifiers such as support 

vector machines, achieving promising but limited 

accuracy. Subsequent advances in CNN-based models 

enabled automatic feature extraction from raw embryo 

images, resulting in substantially higher performance. For 

example, Khosravi et al and Wang et al reported high AUC 

values (>0.90) for blastocyst viability prediction, while 

recent large-scale implementations such as Ida Score v 2.0 

demonstrated strong discriminatory power across different 

developmental stages when trained on hundreds of 

thousands of images.33 

The review also reveals that AI performance improves 

markedly with increased dataset size and diversity. Models 

trained on large, multicenter datasets generally showed 

superior generalizability compared to those developed 

using small, single-center image collections. This finding 

aligns with previous work emphasizing that limited and 

homogeneous datasets restrict the external validity of AI 

tools in reproductive medicine.34 Recent efforts to 

incorporate synthetic data and annotated benchmark 

datasets represent important steps toward overcoming data 

scarcity and improving model robustness.35 

Despite these advances, this review identifies a persistent 

gap between laboratory-level AI performance and 

demonstrated clinical benefit. While many studies report 

high accuracy, sensitivity, or AUC values, relatively few 

link AI-based embryo grading directly to clinically 

meaningful outcomes such as implantation, pregnancy, or 

live birth rates. This concern has been echoed in earlier 

evaluations of AI in IVF, which caution that predictive 

accuracy alone is insufficient without prospective clinical 

validation.36 The limited number of randomized or 

multicenter clinical trials remains a significant barrier to 

widespread clinical adoption. 

In comparison with conventional and time-lapse-based 

embryo assessment, AI appears to complement rather than 

replace embryologist expertise. Several studies suggest 

that AI-assisted grading performs comparably to expert 

embryologists and may serve as a decision-support tool 

rather than an autonomous selector.40 This hybrid 

approach aligns with the Istanbul Consensus updates, 

which emphasize standardized assessment frameworks 

while acknowledging the evolving role of automated 

technologies in embryology laboratories.42 

Overall, the findings of this review are consistent with 

previous literature indicating that AI has the potential to 

enhance precision, standardization, and scalability in 

embryo selection. However, translating these technical 

advances into routine clinical practice requires robust 

prospective trials, transparent and explainable AI models, 

and careful consideration of ethical and regulatory 

challenges. Addressing these issues will be essential to 

ensure that AI-based embryo grading not only improves 

laboratory metrics but also leads to tangible improvements 

in IVF outcomes. 

CONCLUSION 

This review consolidates and critically evaluates over a 

decade of original research on artificial intelligence driven 

embryo grading, demonstrating that AI has the potential to 

substantially enhance precision, objectivity, and 

consistency in embryo selection compared with 

conventional morphology-based assessment in IVF. By 

synthesizing evidence from diverse deep learning 

architectures, developmental stages, and dataset scales, 

this study advances current understanding by highlighting 

not only the technical strengths of AI systems such as 

reduced observer variability and improved predictive 

performance but also the translational gaps that limit their 

routine clinical adoption. Importantly, the review 

underscores that while AI models increasingly achieve 

expert-level grading accuracy, their true clinical value 

depends on robust validation against meaningful outcomes 

such as implantation and live birth, along with 

transparency, ethical safeguards, and clinician trust. By 

integrating technical performance, clinical applicability, 

and ethical considerations into a unified framework, this 

review provides a comprehensive reference for 

researchers, clinicians, and policymakers, and offers a 

clear roadmap for the responsible integration of AI into 

embryo selection to improve IVF outcomes. 
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