

Association of preoperative inflammatory and nutritional serum markers with post-surgical outcomes in advanced epithelial ovarian cancer patients undergoing primary cytoreductive surgery

Shamim Ara^{1*}, Jesmin Sultana², Liza Tasrin³, Ayesha Siddika Purabi⁴, M. Boyez Uddin⁵

¹Department of Obstetrics and Gynaecology, Directorate General of Health, Services (DGHS), Dhaka, Bangladesh

²Department of Gynaecological Oncology, National Institute of Cancer Research and Hospital, Dhaka, Bangladesh

³Department of Obstetrics and Gynaecology, Bangladesh Secretariat Clinic, Dhaka, Bangladesh

⁴Department of Obstetrics and Gynaecology, Dhaka Medical College, Hospital, Dhaka, Bangladesh

⁵Department of Anaesthesia, 300 Bedded Hospital, Khanpur, Narayanganj, Bangladesh

Received: 15 December 2025

Revised: 31 December 2025

Accepted: 14 January 2026

***Correspondence:**

Dr. Shamim Ara,

E-mail: shamimara942@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Background: Advanced epithelial ovarian cancer typically presents at later stages, contributing to high morbidity and mortality. Simple, inexpensive biomarkers such as neutrophil-to-lymphocyte ratio (NLR) and serum albumin may help predict postoperative outcomes, particularly in low-resource settings. This study aimed to evaluate the association of preoperative inflammatory and nutritional serum markers with postoperative outcomes among women undergoing primary cytoreductive surgery for advanced epithelial ovarian cancer.

Methods: A descriptive observational study was conducted at Dhaka Medical College Hospital from July 2021 to June 2022, including 50 women with advanced epithelial ovarian cancer undergoing primary cytoreductive surgery. Preoperative NLR and serum albumin were measured and categorized (NLR <3.4 vs ≥3.4 ; albumin ≥3.5 g/dL vs <3.5 g/dL). Postoperative complications within 30 days and the length of hospital stay were recorded. Statistical analyses included Chi-square tests and t-tests, with $p<0.05$ considered significant.

Results: Elevated NLR (≥3.4) was significantly associated with higher rates of wound infection requiring secondary suturing and increased postoperative blood transfusion. Similarly, hypoalbuminemia (<3.5 g/dL) was strongly associated with postoperative wound complications and higher transfusion needs. Both elevated NLR and low albumin were significantly correlated with prolonged hospital stay.

Conclusions: Preoperative NLR and serum albumin are valuable predictors of postoperative morbidity and recovery after primary cytoreductive surgery for advanced epithelial ovarian cancer. These readily accessible biomarkers can enhance preoperative risk stratification and guide optimization strategies to improve surgical outcomes.

Keywords: Epithelial ovarian cancer, Neutrophil-to-lymphocyte ratio, Serum albumin, Cytoreductive surgery

INTRODUCTION

Epithelial ovarian cancer remains the most lethal gynecologic malignancy worldwide, largely because most women present at an advanced stage when curative treatment becomes challenging. Approximately 95% of ovarian cancers arise from epithelial cells and more than

half are diagnosed at an advanced stage due to asymptomatic early progression and the absence of reliable screening strategies.^{1,2} Globally, an estimated 313,959 new ovarian cancer cases and 207,252 deaths were reported in 2020, underscoring its significant contribution to cancer morbidity and mortality.³ Although less prevalent than breast cancer, ovarian cancer is

substantially more lethal and projections suggest further growth in mortality by 2040.⁴ In Bangladesh, the burden is similarly notable, with 3,122 new cases and 2,096 deaths reported in 2020.⁵

Primary cytoreductive surgery followed by platinum-based chemotherapy remains the cornerstone of treatment for advanced epithelial ovarian cancer.⁶ However, surgical morbidity—particularly in medically or nutritionally compromised patients—may significantly affect perioperative outcomes, delaying chemotherapy, increasing length of hospital stay and ultimately affecting overall survival.^{7,8} Traditional predictors of postoperative complications—such as age, performance status, comorbidities, or FIGO stage—provide only partial explanatory value for postoperative risks. Consequently, there is increasing interest in biochemical markers that reflect systemic inflammation and nutritional status as low-cost, accessible prognostic indicators.

Inflammatory and nutritional markers, including C-reactive protein, interleukin-6, neutrophil-to-lymphocyte ratio (NLR), serum albumin and composite scores such as the Glasgow Prognostic Score, have demonstrated prognostic importance across a range of malignancies.^{9,10} Immune function is tightly interlinked with nutritional state and inflammatory responses and disturbances in these pathways may predispose patients to postoperative complications.¹¹ NLR reflects the balance between circulating neutrophils, which promote tumor progression and inflammatory cytokine release and lymphocytes, which mediate antitumor immunity.¹² Elevated NLR has consistently been correlated with worse survival and more advanced disease in ovarian cancer.^{13,14}

Serum albumin, one of the most widely used biochemical indicators of nutritional status, also reflects systemic inflammation. Hypoalbuminemia results from decreased synthesis due to inflammatory cytokines, altered vascular permeability and catabolic states.¹⁵ Numerous studies have demonstrated its prognostic significance in surgical oncology, including ovarian cancer, where hypoalbuminemia has been associated with higher postoperative complication rates and poorer overall survival.^{10,16}

Preoperative hypoalbuminemia and elevated NLR can predict increase risk of post-operative complications and long hospital stay. Pre-operative immunonutrition improves nutritional status, stimulate immune response by increasing T lymphocytes and modulate control of inflammatory response, thereby improving post-surgical outcomes. Given the simplicity, affordability and universal availability of NLR and serum albumin measurements, these markers represent practical tools for preoperative risk assessment in low-resource settings. Understanding their predictive value is particularly relevant in Bangladesh, where patients undergoing major gynecologic oncology surgery often have limited nutritional reserves and delayed presentation.

This study therefore, aims to evaluate the association between preoperative inflammatory and nutritional serum markers—specifically NLR and serum albumin—and postoperative outcomes in women with advanced epithelial ovarian cancer undergoing primary cytoreductive surgery.

METHODS

This descriptive observational study was conducted in the Gynaecological Oncology Unit of the Department of Obstetrics and Gynecology, Dhaka Medical College Hospital, Dhaka. The study period extended from July 2021 to June 2022. A total of 50 women diagnosed with advanced epithelial ovarian cancer who were scheduled to undergo primary cytoreductive surgery during this period are included in this study. Patients were grouped based on preoperative NLR (<3.4 vs ≥ 3.4) and serum albumin level (≥ 3.5 g/dl vs <3.5 g/dl).

Selection criteria

Inclusion criteria

Women with advanced epithelial ovarian cancer scheduled for primary cytoreductive surgery; patients admitted to Dhaka Medical College Hospital within the study period were included.

Exclusion criteria

Non-epithelial ovarian malignancy; candidates for interval cytoreductive surgery; significant concomitant illnesses, including chronic heart failure, renal failure, or chronic liver disease; patients are unable to comprehend written or verbal study information were excluded.

Data collection procedure

Patients with a provisional diagnosis of advanced epithelial ovarian cancer were identified through clinical evaluation, CA-125 testing, ultrasonography and CT imaging. Preoperative serum albumin was measured using the Bromocresol Green (BCG) method. The neutrophil-to-lymphocyte ratio was calculated by dividing the absolute neutrophil count by the lymphocyte count. All patients underwent primary cytoreductive surgery with FIGO staging and postoperative complications within 30 days were recorded. Length of hospital stay was counted from the first postoperative day until discharge. Data were collected using a structured questionnaire and verified through clinical and laboratory records.

Ethical considerations

Ethical approval was obtained in accordance with the regulations of the Dhaka Medical College Ethical Review Committee, following the Declaration of Helsinki (1964). Participation was voluntary and informed consent was obtained from all participants after explanation of the

study aims in the local language. Patients were assured of confidentiality, anonymity and the freedom to withdraw at any stage without affecting their care. Personal data were protected and used solely for research purposes.

Statistical analysis

Data were analyzed using SPSS version 26.0 for Windows. Continuous variables were summarized as mean±standard deviation and categorical variables as frequencies and percentages. The Chi-square test was applied to assess the association between categorical variables and postoperative complications. Independent sample t-tests were used to compare mean hospital stay across NLR and albumin groups. A p value <0.05 was considered statistically significant.

RESULTS

Table 1 shows that the mean age was 51.9 ± 12.2 years. All were multiparous. The majority of 32 (64.0%) patients had normal BMI $<25 \text{ kg/m}^2$ and 23 (46.0%) patients had ascites. 13 (26.0%) patients had hypertension and 5 (10.0%) had diabetes mellitus. 29 (58.0%) patients had serous, 9 (18.0%) had adenocarcinoma, 8 (16.0%) had endometrioid, 2 (4.0%) had mucinous and 2 (4.0%) had clear cell. Premenopausal was found in 16 (32.0%) and postmenopausal was 34 (68.0%). Mean baseline NLR ratio was 3.36 ± 0.81 and mean serum albumin was $3.57 \pm 0.39 \text{ gm/dl}$.

Figure 1 shows that two-thirds (66.0%) of patients had NLR <3.4 and 17 (34.0%) had NLR ≥ 3.4 .

Table 1: Baseline characteristics of the study population (n=50).

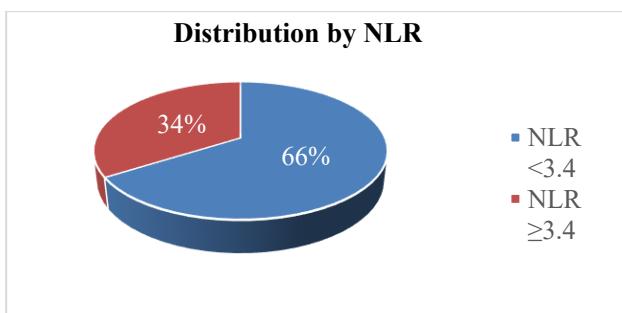

Variable	Frequency (N)	Percentage (%)
Age (years)	51.9 ± 12.2	
Multiparous	50	100
BMI		
$<25 \text{ kg/m}^2$	32	64
$\geq 25 \text{ kg/m}^2$	18	36
Comorbidities		
Hypertension	13	26
Diabetes mellitus	5	10
Serous	29	58
Endometrioid	8	16
Adenocarcinoma	9	18
Mucinous	2	4
Clear cell	2	4
Menopausal status		
Premenopausal	16	32.0
Postmenopausal	34	68.0
Ascites present	23	46
Baseline NLR (mean)	Mean±SD	3.36 ± 0.81
Serum albumin (mean)	Mean±SD	3.57 ± 0.39

Table 2: Association between postoperative complications with NLR (n=50).

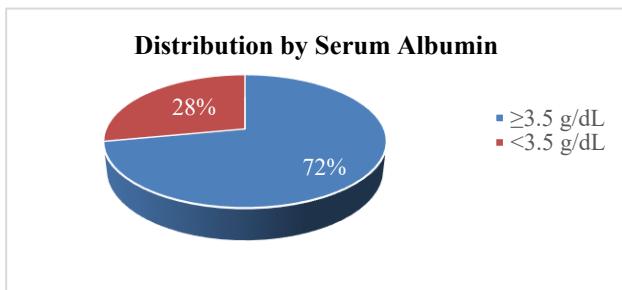

Post operative complications	NLR		P value
	<3.4 (n=33)	≥ 3.4 (n=17)	
Superficial wound infection	9 (27.3)	6 (35.3)	0.557
Wound infection needs secondary suturing	2 (6.1)	6 (35.3)	0.007
Blood transfusions for anaemia	8 (24.2)	10 (58.8)	0.015
Urinary tract infection	4 (12.1)	4 (23.5)	0.297
Pneumonia	2 (6.1)	1 (5.9)	0.997
Burst abdomen	0 (0.0)	1 (5.9)	0.159

Table 3: Association between postoperative complications with serum albumin (n=50).

Complications	Serum albumin (gm/dl)		P value
	<3.5 (n=14)	≥ 3.5 (n=36)	
Superficial wound infection	7 (50.0)	8 (22.2)	0.054
Wound infection needs secondary suturing	5 (35.7)	3 (8.3)	0.017
Blood transfusions for anaemia	9 (64.3)	9 (25.0)	0.009
Urinary tract infection	3 (21.4)	5 (13.9)	0.513
Pneumonia	2 (14.3)	1 (2.8)	0.123
Burst abdomen	0 (0.0)	1 (2.8)	0.528

Figure 1: Distribution of the study patients by NLR (n=50).

Figure 2: Distribution of the study patients by serum albumin (n=50).

Table 4: Association between hospital stay with NLR and serum albumin (n=50).

Variables	Total number		Hospital stays (days), mean±SD	P value
NLR	<3.4	33	18.69±4.88	0.004
	≥3.4	17	23.35±5.64	
Serum albumin (gm/dl)	<3.5	14	23.07 ±6.00	0.025
	≥3.5	36	19.19 ±5.05	

DISCUSSION

This study found that the mean age of participants was 51.9 ± 12.2 years and all were multiparous. Approximately one-third were premenopausal (32.0%), whereas 68.0% were postmenopausal. Previous work by Demir et al reported that nearly half of patients diagnosed with ovarian cancer are older than 65 years and overall survival tends to decline with advancing age.¹⁷ Similarly, Kumar et al reported a higher mean age of 68.8 ± 11.7 years.¹⁶

Regarding nutritional status, most participants (64.0%) had a normal BMI of 25 kg/m^2 . This aligns partially with Zhang et al, who found that 13.1% of patients had a BMI $<18.5 \text{ kg/m}^2$ and 86.9% had a BMI $\geq18.5 \text{ kg/m}^2$.¹⁸ In contrast, Kumar et al observed a higher prevalence of obesity, with 34.0% of patients having a BMI $\geq30 \text{ kg/m}^2$.¹⁶

The mean neutrophil-to-lymphocyte ratio (NLR) in this study was 3.36 ± 0.81 and the mean serum albumin level was $3.57\pm0.39 \text{ g/dL}$. Demir et al reported a median NLR of 3.7 (range 0.42–17.5), while Kumar et al noted a mean

More than two-thirds (72.0%) of patients had serum albumin (gm/dl) ≥3.5 and 14(28%) had <3.5 .

Table 2 shows that wound infection needed secondary suturing (35.3% vs 6.1%) and blood transfusion for anemia (58.8% vs 24.2%) were significantly higher in NLR ≥3.4 than <3.4 . Superficial wound infection, urinary tract infection, pneumonia and burst abdomen were not statistically significant compared with NLR.

Table 3 shows that wound infection needed secondary suturing (35.7% vs 8.3%) and blood transfusion for anemia (64.3% vs 25.0%) were significantly higher in hypoalbuminemia patients than in normal patients. Superficial wound infection, urinary tract infection, pneumonia and burst abdomen were not statistically significant compared with serum albumin level.

Table 4 shows that the mean hospital stay was higher in NLR ≥3.4 than <3.4 (23.35 ± 5.64 vs 18.69 ± 4.88) and also in hypoalbuminemia patients than in normal patients (23.07 ± 6.00 vs 19.19 ± 5.05). The difference was statistically significant ($p<0.05$) compared to hospital stay with NLR and albumin level.

serum albumin level of $3.7\pm0.7 \text{ g/dL}$.^{16,17} Zhou et al similarly documented a mean NLR of 3.37, a value used as reference in the current study.¹⁹

With respect to histopathology, serous carcinoma constituted the largest proportion (58.0%), followed by adenocarcinoma (18.0%), endometrioid (16.0%) and mucinous and clear-cell types (4.0% each). Comparable distributions were reported by Demir et al, who observed serous carcinoma as the predominant subtype (87%).¹⁷ Zhang et al documented serous histology in 51.9% of cases.¹⁸ Findings from Kumar et al and Ataseven et al also reinforce the predominance of serous pathology among ovarian cancer patients.^{16,20}

This study identified that two-thirds (66.0%) of patients had an NLR <3.4 , while 34.0% had an NLR ≥3.4 . John-Olabode et al reported a similar pattern, with 59.1% of patients having an NLR <2.23 .²¹ Zhou et al also showed that across multiple studies, NLR <3.4 was observed in 43.8% and ≥3.4 in 56.3%.¹⁹

Serum albumin levels ≥ 3.5 g/dl were present in 72.0% of participants, while 28.0% had levels < 3.5 g/dl. Kumar et al found hypoalbuminemia (≤ 3.0 g/dl) in 19.0% of patients and Ataseven et al noted a preoperative hypoalbuminemia rate of 16.4%.¹⁶⁻²⁰ Another study by Kumar et al reported low serum albumin (< 3.5 g/dl) in 14.2% of cases.²²

Postoperative outcomes showed that patients with NLR ≥ 3.4 had significantly higher rates of wound infection requiring secondary suturing (35.3% vs 6.1%) and blood transfusion for anemia (58.8% vs 24.2%). Other postoperative complications—including superficial wound infection, urinary tract infection, pneumonia and burst abdomen—did not differ significantly. Zhang et al demonstrated that elevated NLR is associated with poorer overall survival (OS).²³ These findings are consistent with previous meta-analyses evaluating NLR as a prognostic marker in various malignancies.²⁴

Hypoalbuminemia was also associated with higher rates of complications. Patients with albumin < 3.5 g/dl showed significantly more wound infections requiring secondary suturing (35.7% vs 8.3%) and a higher need for blood transfusion (64.3% vs 25.0%). Other postoperative complications were not significantly associated with albumin levels. Ataseven et al found that hypoalbuminemic patients were at markedly increased risk of severe complications and 30-day postoperative mortality.²⁰ Similar associations were reported in ovarian cancer cohorts by Aletti et al and Obermair et al, the latter noting significantly higher rates of wound complications, septicemia and anastomotic leakage in hypoalbuminemic patients undergoing extensive cytoreductive procedures.^{25,26}

Finally, the mean hospital stay was significantly longer among hypoalbuminemic patients compared with those with normal albumin levels (23.07 ± 6.00 vs 19.19 ± 5.05 days). Kumar et al also observed prolonged hospitalization in patients with albumin ≤ 3 g/dl, although the difference was not statistically significant.¹⁶ In contrast, Kim et al reported a significantly longer postoperative stay among patients with hypoalbuminemia.²⁷

CONCLUSION

Preoperative inflammatory and nutritional markers, particularly NLR and serum albumin, are significantly associated with postoperative complications and length of hospital stay in women undergoing primary cytoreductive surgery for advanced epithelial ovarian cancer. Elevated NLR and hypoalbuminemia were strong predictors of wound infection, increased transfusion requirements and prolonged hospitalization. These findings emphasize the importance of incorporating simple, cost-effective biochemical markers into preoperative assessment to optimize surgical planning and improve postoperative recovery. Integrating these markers into routine evaluation may be especially valuable in low-resource settings, where

early identification of high-risk patients can inform targeted perioperative interventions.

ACKNOWLEDGEMENTS

Authors would like to express their sincere gratitude for the invaluable support and cooperation provided by the staff, participants and the co-authors/colleagues who contributed to this study.

Funding: No funding sources

Conflict of interest: None declared

Ethical approval: The study was approved by the Institutional Ethics Committee

REFERENCES

1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. *CA cancer J Clin.* 2018;68(1):7-30.
2. Yoneda A, Lendorf ME, Couchman JR, Multhaupt HA. Breast and ovarian cancers: a survey and possible roles for the cell surface heparan sulfate proteoglycans. *Journal Histochem Cytochem.* 2012;60(1):9-21.
3. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA Cancer J Clin.* 2021;71(3):209-49.
4. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. *CA cancer J Clin.* 2018;68(6):394-424.
5. The Global Cancer Observatory 2020. Bangladesh, International Agency for Research on Cancer. WHO.
6. Robinson TN, Wallace JI, Wu DS, Wiktor A, Pointer LF, Pfister SM, et al. Accumulated frailty characteristics predict postoperative discharge institutionalization in the geriatric patient. *J Am Coll Surg.* 2011;213(1):37-42.
7. Erikson EA, Ratner ES, Walke LM, Fried TR. Gynecologic surgery in the geriatric patient. *Obstet Gynecol.* 2012;119(6):1262-9.
8. Al Hilli MM, Tran CW, Langstraat CL, Martin JR, Weaver AL, McGree ME, et al. Risk-scoring model for prediction of non-home discharge in epithelial ovarian cancer patients. *J Am Coll Surg.* 2013;217(3):507-15.
9. Zhou Q, Hong L, Zuo MZ, He Z. Prognostic significance of neutrophil to lymphocyte ratio in ovarian cancer: evidence from 4,910 patients. *Oncotarget.* 2017;8(40):68938-49.
10. Gupta D, Lis CG. Pretreatment serum albumin as a predictor of cancer survival: a systematic review of the epidemiological literature. *Nutr J.* 2010;9(1):69.
11. Schwegler I, Von Holzen A, Gutzwiller JP, Schlumpf R, Mühlbach S, Stanga Z. Nutritional risk is a clinical predictor of postoperative mortality and

morbidity in surgery for colorectal cancer. *Br J Surg.* 2010;97(1):92-7.

- 12. Wang YQ, Jin C, Zheng HM, Zhou K, Shi BB, Zhang Q, et al. A novel prognostic inflammation score predicts outcomes in patients with ovarian cancer. *Clin Chim Acta.* 2016;456:163-9.
- 13. Gondo T, Nakashima J, Ohno Y, Choichiro O, Horiguchi Y, Namiki K, et al. Prognostic value of neutrophil-to-lymphocyte ratio and establishment of novel preoperative risk stratification model in bladder cancer patients treated with radical cystectomy. *Urology.* 2012;79(5):1085-91.
- 14. Xu J, Ni C, Ma C, Zhang L, Jing X, Li C, et al. Association of neutrophil/lymphocyte ratio and platelet/lymphocyte ratio with ER and PR in breast cancer patients and their changes after neoadjuvant chemotherapy. *Clin Transl Oncol.* 2017;19(8):989-96.
- 15. Ballmer PE, Ochsenbein AF, Schütz-Hofmann S. Transcapillary escape rate of albumin positively correlates with plasma albumin concentration in acute but not in chronic inflammatory disease. *Metabolism.* 1994;43(6):697-705.
- 16. Kumar A, Torres ML, Cliby WA, Kalli KR, Bogani G, Aletti G, et al. Inflammatory and nutritional serum markers as predictors of peri-operative morbidity and survival in ovarian cancer. *Anticancer Res.* 2017;37(7):3673-7.
- 17. Demir A, Alan O, Koca S, Surmeli H. The relationship between the prognostic nutritional index and overall survival in elderly patients with epithelial ovarian cancer. *EJMI.* 2020;4(2):269-73.
- 18. Zhang W, Ye B, Liang W, Ren Y. Preoperative prognostic nutritional index is a powerful predictor of prognosis in patients with stage III ovarian cancer. *Sci Rep.* 2017;7(1):9548.
- 19. Zhou Q, Hong L, Zuo MZ, He Z. Prognostic significance of neutrophil to lymphocyte ratio in ovarian cancer: evidence from 4,910 patients. *Oncotarget.* 2017;8(40):68938-49.
- 20. Ataseven B, du Bois A, Reinthaller A, Traut A, Heitz F, Aust S, et al. Pre-operative serum albumin is associated with post-operative complication rate and overall survival in patients with epithelial ovarian cancer undergoing cytoreductive surgery. *Gynecol Oncol.* 2015;138(3):560-5.
- 21. John-Olabode SO, Okunade KS, Olorunfemi G, Soibi-Harry A, Rimi G, Osunwusi B, et al. Pretreatment neutrophil-to-lymphocyte ratio: a prognostic biomarker of survival in patients with epithelial ovarian cancer. *Cureus.* 2021;13(7):e16429.
- 22. Kumar A, Janco JM, Mariani A, Bakkum-Gamez JN, Langstraat CL, Weaver AL, et al. Risk-prediction model of severe postoperative complications after primary debulking surgery for advanced ovarian cancer. *Gynecol Oncol.* 2016;140(1):15-21.
- 23. Zhang WW, Liu KJ, Hu GL, Liang WJ. Preoperative platelet/lymphocyte ratio is a superior prognostic factor compared to other systemic inflammatory response markers in ovarian cancer patients. *Tumor Biol.* 2015;36(11):8831-7.
- 24. Tsai PL, Su WJ, Leung WH, Lai CT, Liu CK. Neutrophil-lymphocyte ratio and CEA level as prognostic and predictive factors in colorectal cancer: A systematic review and meta-analysis. *J Cancer Res Ther.* 2016;12(2):582-9.
- 25. Aletti GD, Santillan A, Eisenhauer EL, Hu J, Aletti G, Podratz KC, et al. A new frontier for quality of care in gynecologic oncology surgery: multi-institutional assessment of short-term outcomes for ovarian cancer using a risk-adjusted model. *Gynecol Oncol.* 2007;107(1):99-106.
- 26. Obermair A, Hagenauer S, Tamandl D, Clayton RD, Nicklin JL, Perrin LC, et al. Safety and efficacy of low anterior en bloc resection as part of cytoreductive surgery for patients with ovarian cancer. *Gynecol Oncol.* 2001;83(1):115-20.
- 27. Kim J, Shim SH, Oh IK, Yoon SH, Lee SJ, Kim SN, et al. Preoperative hypoalbuminemia is a risk factor for 30-day morbidity after gynecological malignancy surgery. *Obstet Gynecol Sci.* 2015;58(5):359-67.

Cite this article as: Ara S, Sultana J, Tasrin L, Purabi AS, Uddin MB. Association of preoperative inflammatory and nutritional serum markers with post-surgical outcomes in advanced epithelial ovarian cancer patients undergoing primary cytoreductive surgery. *Int J Reprod Contracept Obstet Gynecol* 2026;15:454-9.