DOI: http://dx.doi.org/10.18203/2320-1770.ijrcog20170369

# **Original Research Article**

# Interventional study to find out effect of human chorionic gonadotropin and antioxidants on idiopathic male infertility

Namrata V. Padvi<sup>1\*</sup>, Pooja P. Singh<sup>1</sup>, Kishore M. Nadkarni<sup>2</sup>, Prabhakar M. Singh<sup>3</sup>

<sup>1</sup>Department of Reproductive Medicine and infertility, <sup>2</sup>Department of Andrology and Sexology, <sup>3</sup>Department of Clinical Embryology and Andrology, Nadkarni's 21st Century Hospital and Test Tube Baby Centre, Surat, Gujrat, India

Received: 01 December 2016 Accepted: 26 December 2016

# \*Correspondence:

Dr. Namrata V. Padvi,

E-mail: nams25padvi@gmail.com

**Copyright:** © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

## **ABSTRACT**

**Background:** Male contributes about 50% for cases with combined male and female infertility. When the cause is not known, it is term as idiopathic infertility. It affects 25% of men. Many advances have been made in reproductive medicine which provides great opportunities, couples which were considered untreatable now have got chance to have their own babies. Various ART procedures like ICSI have been proven as an efficient therapy in severe male factor infertility. However, the cost per cycle and complications such as multiple gestations cannot be ignored. Medical management of infertility can be specific or empirical depending on etiology. Specific medical management is use when certain etiology is identified. However, in absence of specific etiology use of empirical medical treatment can be attempted in order to improve treatment results. In this study our aim is to evaluate the effect of human chorionic gonadotropin (hCG) and antioxidants on semen parameters in men with idiopathic male infertility.

**Methods:** Thirty men with abnormal semen parameters were included in study. Patients were treated with injection hCG-2000 IU three times a week for three months along with the antioxidants. After 3 months of treatment repeat semen analysis were performed and results were compared with pre-treated seminal parameters.

**Results:** Results showed significant increase in sperm count (p value  $\le 0.001$ ), total motility (p value=<0.001), and progressive forward motility (p value = <0.001), while no significant difference is seen in rest of the parameters.

**Conclusions:** Use of hCG and antioxidants in idiopathic male infertility can significantly improve seminal parameters in idiopathic male infertility.

Keywords: ART, ICSI, Male infertility, Sperm

## INTRODUCTION

Infertility is defined as failure of a couple to achieve spontaneous pregnancy even after regular unprotected sexual intercourse in one year. Affects about 15% of couples. Both male and female contributes to infertility. Male factor is responsible for 30% of cases and contributes to an additional 20% in combination with female factor. Thus 50% of cases of infertility can be explained by combined male and female factors. <sup>2,3</sup>

When the cause of infertility cannot be identified, the condition is termed idiopathic. It is seen in 25% of men.<sup>2</sup>

Men with idiopathic infertility present with no significant history and have normal physical examination and hormonal profile. However, semen analysis reveals a decreased sperm concentration, decreased sperm motility, and increase abnormal forms of sperm. These sperm abnormalities when occur together are called oligo-astheno-teratozoospermia (OAT) syndrome.

Medical management of male infertility is divided into two categories: specific and empirical. Specific treatments are used for certain conditions like hypogonadotropic hypogonadism, hyperprolactinemia, genital tract infection, ejaculatory dysfunction etc.<sup>4</sup> In contrast empirical treatment consist of gonadotropins, antiestrogens, and aromatase inhibitors and support with antioxidant supplements such as carnitine, lycopene, glutathione, and vitamin E etc. when no specific cause of infertility is found.<sup>5</sup> However, scientifically acceptable evidence of empirical treatment efficacy is limited because of the lack of large, randomized, controlled studies.<sup>2</sup>

With the advance of ART techniques many infertile men have got fortune to father a child. Even in severe oligospermia, couple can achieve pregnancy with the help of ICSI. Though all this seems fascinating other side of mirror cannot be neglected. That is complications of ART procedures like multiple gestations followed by fetal reduction, miscarriages, preterm delivery and last but not the least cost of procedure. All this has drained many couples emotionally and economically. In this study, we have treated infertile men with human chorionic gonadotropin (hCG) and antioxidants in an attempt to reduce complication and economical burden of the couple.

#### **METHODS**

This study was designed as a prospective interventional study. Thirty infertile men with abnormal semen analysis attending an andrology outpatient clinic at 21st century hospital Surat, Gujarat within period of 6 months from March to August 2016 were enrolled in this study. Their age ranged from 25-45 years, mean duration of infertility was 6.5 years including a minimum of 1 year of regular unprotected sexual activity without achieving pregnancy. All men were informed about the details of study and in particular about treatment protocol at different stages of study design and about the possibility of undergoing assisted reproductive techniques during this period.

#### Inclusion criteria

Consisted of history of at least 1 year infertility with semen analysis showing oligo-astheno-terato-zoospermia on at least three separate occasions. Sperm concentration less than 15 million, sperm total motility was less than 40%, sperm forward progressive motility less than 32%, normal sperm morphology was greater than 4%.

#### Exclusion criteria

Included cases with azoospermia. Couples with combined male and female factors infertility, varicocele, hernia, and trauma were excluded.

The study was reviewed and approved by our institutional review board. All patients provided a written informed consent explaining the nature of study, the possibility of treatment failure. They underwent a clinical evaluation including history taking, general examination and genital examination for possible causes of infertility. Investigation for male partner included semen analysis according to World Health Organization criteria, hormonal profile (serum FSH, total testosterone, estrogen, prolactin), and karyotype in those who needed. Semen analyses were performed at least thrice before commencing treatment and once after completion of three months of treatment. All men with abnormal semen analysis were treated with injection hCG 2000 IU three times a week for three months along with antioxidants. After 3 months of treatment repeat semen analysis were performed and results were compared with previous parameters.

### **RESULTS**

The results were expressed as mean  $\pm$  SD. Analysis was done with help of SPSS version 20. Paired t test was applied to study difference between semen parameters before and after medical intervention. Mean age of the patients was 33 $\pm$ 5.0 years (mean $\pm$ SD). The average infertility duration was 6.5 years.

**Before treatment** After treatment TM **FPM** TMVolume **ABF** Volume **FPM ABF Count** Count (ml) (%)(%)(%)(ml) (%)(%) (%)Mean 8.30 17.23a 3.33 35.33 25.17 3.23 2.37 75.67<sup>b</sup> 60.33c 3.67 SD 4.550 5.473 5.561 5.796 0.504 7.099 0.669 0.547 11.198 10.334 Mini 1 0 25 15 2 6 1 50 40 3 17 3 40 35 4 34 90 80 5

Table 1: Seminal parameters before and after treatment.

Note: TM = total motility, FPM = forward progressive motility, ABF = abnormal forms. Ap = <0.001; bp = <0.001; cp = <0.001.

Sperm concentration was significantly improved from  $8.3 \times 106\pm4.5$  baseline to  $17.2 \times 106\pm7$  after treatment (p = <0.001; Table 1). Total motility and forward progressive motility of sperm also showed significant improvement (p = <0.001) while rest of the seminal parameters failed to show any significant difference.

#### DISCUSSION

Idiopathic male infertility affects almost 25% of men in reproductive age group.<sup>2</sup> And medical therapy for these patients is still not accepted because of lack of significant evidence. Therefore, at many centre management of male infertility consist of assisted reproduction with intracytoplasmic sperm injection (ICSI). Though these ART treatments provide great opportunities to couple with infertility, potential hazards like multiple gestation and cost cannot be ignored.

In this study our aim was to evaluate the effect of hCG and antioxidants on semen parameters in men with idiopathic male infertility. Thirty men with abnormal semen analysis (according to WHO criteria) were included in the study.6 All were treated with injection hCG 2000 IU three times a week for three months along with antioxidants. After 3 months of treatment repeat semen analysis were performed and results were compared with previous parameters. Sperm concentration was significantly improved (p = <0.001) along with total motility and forward progressive motility.

The hypothalamo-pituitary-ovarian axis is involved in process of spermatogenesis. Hypothalamus releases gonadotropin releasing hormones (GnRH) which acts on pituitary gland and to produce FSH and LH. FSH acts on sertoli cell while LH acts on leydigs cell to produce testosterone. Testosterone is responsible spermatogenesis. Human chorionic gonadotropin is known to have LH like activity due to cross-reaction with β subunit of LH.7,8 Mechanism of action of hCG is same as LH. Structurally β subunit of both this glycoprotein hormones exhibit 80% of homology. Hence both binds on same receptor and therefore have same mechanism of action. In short hCG mimics the activity of LH the only difference being longer half-life of hCG.9

According to AACE clinical guideline hCG alone can initiate sperm production and it should be initial therapy of choice for at least 6 to 12 months. Therapy with hCG is generally started at 1000 to 2000 IU intramuscularly two to three times a week. Both testosterone levels and sperm counts should be monitored monthly. If sperm concentration is not improve after 6 months of treatment, then FSH can be added in the dose of 75 IU intramuscularly three times a week along with hCG.<sup>10</sup>

Reactive oxygen species (ROS) have been described as a potential cause of male infertility.<sup>11</sup> An imbalance between ROS and physiologic antioxidant level can cause oxidative stress with subsequent detrimental effect on of

spermatogenesis. Elevated reactive oxygen species have been found in 30-80% of infertile males and can cause abnormalities of seminal parameters like sperm morphology, motility, concentration, and DNA integrity, resulting in difficulties achieving pregnancy. The impact of ROS on fertilisation and pregnancy is controversial.<sup>12</sup> Many studies were done to evaluate effect of antioxidants therapy in men with idiopathic infertility but its exact role is still poorly understood due to lack of controlled trials.<sup>13</sup> A recent Cochrane Collaboration which included pooled analysis of 34 randomized controlled trials, have noticed a significant increase in pregnancy and live-birth rates in the couples treated with antioxidant therapy, but no difference was seen in seminal parameters.<sup>14</sup> However, when therapeutic efficacy and the cost of the treatment is concern, oral antioxidant supplementation may be a reasonable treatment regimen before proceeding with more expensive treatments such as IVF or ICSI.

#### **CONCLUSION**

In our study though we have found that medical treatment with hCG and antioxidants for period of 3 months have significantly improved seminal parameters, results of this treatment in terms of overall pregnancy rates may have differ if observation period would have been long enough. We proposed that treatment of idiopathic male infertility with hCG and antioxidants may prove cost effective and one can achieve pregnancy naturally without ART related complication. Further trials would be informative.

Funding: No funding sources Conflict of interest: None declared

Ethical approval: The study was approved by the

Institutional Ethics Committee

# REFERENCES

- World Health Organization. WHO Manual for the Standardized Investigation and Diagnosis of the Infertile Couple. Cambridge: Cambridge University Press; 2000.
- Jung JH, Seo JT. Empirical medical therapy in idiopathic male infertility: Promise or panacea? Clin Exp Reprod Med. 2014;41(3):108-14.
- 3. Meacham RB, Lipshultz LI, Howards SS. Male infertility. In: Gillenwater JY, Grayhack JT, Howards SS, Duckett JW, eds. Adult and pediatric urology. St Louis: Mosby-Year Book; 1996:1747-802.
- 4. Cocuzza M, Agarwal A. Nonsurgical treatment of male infertility: specific and empiric therapy. Biologics: Targets and Therapy. 2007;1(3):259-69.
- Gudeloglu A, Brahmbhatt JV, Parekattil SJ. Medical management of male infertility in the absence of a specific etiology. Semin Reprod Med. 2014;32(4):313-
- 6. Cooper TG, Noonan E, von Eckardstein S. World Health Organization reference values for human semen characteristics. Hum Reprod Update. 2010;16(3):231.

- 7. Chehval MJ, Mehan DJ. Chorionic gonadotropins in the treatment of the sub fertile male. Fertil Steril. 1979;31(6):666-8.
- 8. Fraietta R, Zylberstejn DS, Esteves SC. Hypogonadotropic hypogonadism revisited. Clin. 2013;68(Suppl 1):81-8.
- 9. Jennifer A, Mark S, Charles J, Allan M, David J. Luteinizing hormone receptor mediated effects on initiation of spermatogenesis in gonadotropin deficient mice. Biol Reproduct. 2004;70:32-8.
- AACE Hypogonadism Task Force. American association of clinical endocrinologists medical guidelines for clinical practice for the evaluation and treatment of hypogonadism in adult male patients, 2002 update. Endocrine Practice. 2002;8(6):439-456.
- 11. MacLeod J. The role of oxygen in the metabolism and motility of human spermatozoa. Ame J Physiol. 1943;138:512-8.

- 12. Ko EY, Sabanegh ES, Agarwal A. Male infertility testing: reactive oxygen species and antioxidant capacity. Fertil Steril. 2014;102(6):1518-27.
- 13. Garg H, Kumar R. Empirical drug therapy for idiopathic male infertility: what is the new evidence? Urol. 2015;86(6):1065-75.
- Showell MG, Brown J, Yazdani A, Stankiewicz MT, Hart RJ. Antioxidants for male subfertility. Cochrane Database Syst Rev. 2011:CD007411.

Cite this article as: Padvi NV, Singh PP, Nadkarni KM, Singh PM. Interventional study to find out effect of human chorionic gonadotropin and antioxidants on idiopathic male infertility. Int J Reprod Contracept Obstet Gynecol 2017;6:496-9.