Original Research Article

Congenital cystic adenomatoid malformation (CCAM): antenatal and postnatal management

Jayashree V. Kanavi*, Jasmine Thangaraj, Annamma Thomas

Department of Obstetrics and Gynecology, St Johns Medical College and Hospital, Bangalore, Karnataka, India

Received: 24 March 2017
Revised: 30 March 2017
Accepted: 22 April 2017

*Correspondence:
Dr. Jayashree V. Kanavi,
E-mail: jvkanavi@gmail.com

Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Background: Congenital cystic adenomatoid malformation (CCAM) is a rare abnormality of lung development. The estimated incidence ranges from 1: 10,000 to 1:35,000 live births. It is diagnosed by prenatal screening at 18-20 weeks of gestation. Surgical excision of symptomatic lesions is relatively straightforward, but management of asymptomatic lesions is controversial.

Methods: Among women who delivered at St. Johns medical college and hospital, Bangalore between Jan 2011 to Dec 2016, those with the diagnosis of CCAM during anomaly scan were included in the study. Antenatal and Postnatal period and their outcomes were evaluated. Follow up was extend up to the childhood in the affected foetus.

Results: There were 5 cases of CCAM in 13057 deliveries during 5-year study. Incidence was 1:2611. Mean gestational age at diagnosis was 21.6±2.5 weeks. All foetuses had CVR (CCAM volume) ratio more than 1.6 and there was no compromise on lung volume. Mean lung volume was 62.8±8.6 cc. and mean Apgar score at 1minute was 6.8±2.7 and at 5 minutes was 8.0±2.2. Among 5 foetuses, 2 foetuses had regression of cyst by birth and 3 underwent surgery for resection after birth.

Conclusions: CCAM remains a challenge for obstetricians, neonatologists and paediatric surgeons. The combination of prenatal MRI and serial ultrasound studies optimize foetal surveillance and postnatal care. In asymptomatic CCAM, babies should be followed up to adolescence and adulthood, as they can manifest with malignant changes.

Keywords: CCAM, CTM, Non-immune hydrops

INTRODUCTION

Congenital Cysticadenomatoid malformation (CCAM) is a rare abnormality of lung development. It is characterized by cystic intrathoracic masses caused by proliferative terminal respiratory bronchioles and by a reduction in the number of normal alveoli. It usually affects a single pulmonary lobe; multi-lobular or bilateral involvement is rare. CCAM was first reported in 1949 by ch’ in and Tang.

The estimated incidence of CCAM ranges from 1:10,000 to 1: 35,000 live births, with male and female neonates equally affected. Most available data regarding accuracy of prenatal diagnosis, prevalence and outcome of CCAM are derived largely from tertiary referral centres and may not reflect general population rates.

CCAM accounts for 95% of congenital cystic lung diseases and is the most common cystic lung lesion diagnosed by prenatal screening at 18-20 weeks of gestation. However, with the advent of prenatal ultrasound (USG), it is likely that the true incidence may have been underestimated because previously undiagnosed lesions are now being detected. Serial ultrasound study of foetuses with lung lesions has helped...
to define the natural history of these lesions, determine
the patho-physiologic features that affect clinical
outcome and formulate management on the basis of
prognosis. The overall prognosis depends on the size of
the lung mass and the secondary patho-physiological
effects; a large mass causes mediastinal shift, hypoplasia
of normal lung tissue, polyhydramnios, and cardiovascular compromise leading to foetal hydrops and
death.5 Large foetal lung tumours may partially disappear
on serial prenatal ultrasound, illustrating that
improvement can occur during foetal life.

The management of symptomatic CCAMs is
consensually agreed, whereas the management of
asymptomatic CCAMs is still contentious.6

Only a few CCAMs cause foetal problems, with foetal
hydrops being the best predictor of foetal death. Although
many CCAMs regress during pregnancy, most remain
detectable postnatally by CT scans. Surgical excision of
symptomatic lesions is relatively straightforward, but
management of asymptomatic lesions is controversial.
Some surgeons adopt a “wait and watch” approach,
operating only on those patients who develop symptoms,
but other operate on asymptomatic patient usually within
the first year of life. Due to the potential of malignant
transformation, children should have long term follow
up. There is an urgent need to delineate the natural history
of antenatally detected CCAMs to guide future
management.5

Classification of CCAMs

The description and classification of congenital lung cyst
has evolved over time.

Several classifications have been proposed. A great
controversy exists regarding the correlation between
clinical behaviour, prognosis and the CCAM type.
Stocker’s classification was based upon 38 cases. It
reflects the pattern of the lesions that were characterised
from autopsied infants with a predominance of type II
and type III lesions.1 Later studies showed that the
prognosis of prenatally diagnosed lesions depends on
the presence or absence of hydrops.7

Other prognostic factors include: the size of the lesions
and its secondary effects namely mediastinal shift, the
extent of pulmonary hypoplasia, polyhydramnios,
cardiocirculatory compromise, the degree of development
of the unaffected lung, and the presence or absence of
other congenital anomalies such as extra lobar
sequestration, diaphragmatic hernia, pulmonary
hypoplasia, cardiovascular malformation, hydrocephalus,
skeletal malformation, jejunal atresia, bilateral renal
agenesis/dysgenesis and Pierre Robin syndrome.8

Types of CCAM1 are:

• Type O: Acinar atresia
• Type 1: Cysts up to 10 cm. The cysts are lined by
 pseudo-stratified ciliated cells that are often
 interspersed with rows of mucous cells
• Type 2: Sponge like multiple small cysts resemble
dilated bronchioles separated by normal alveoli.
Striated muscle seen in 5%
• Type 3: Solid. Excess of bronchiolar structures
 separated by small air spaces with cuboidal lining
 (foetal lung)
• Type 4: Cysts up to 10 cm, the cysts are lined by
 flattened epithelium resting upon loose mesenchymal
tissue.

The natural history of prenatal cystic lung lesions varies
from complete regression in utero to life threatening
hydrops foetalis. The timing of regression is variable but
tends to be in the mid-third trimester usually at 32034
weeks of gestation.8 Hydrops is the strongest prognostic
factor and it may be an indication for prenatal
intervention. A Survival rate is more than 95% in
CCAMs without hydrops. The development of hydrops
typically limited to those foetuses with very large chest
masses with mediastinal shift and venacaval obstruction.
Ultrasound measurement of the CCAM volume ratio
(CVR) is an index estimated as the CCAM volume
divided by the head circumference. A CVR is >1.6, the
risk for hydrops ranges between 15-75%.9 Proposed
antenatal and perinatal interventions include steroid
administration, intrauterine puncture or shunting of
macrocystic masses, alcohol embolization or lasing of
the feeding vessel or lobectomy. The evidence for these
interventions is currently poor.6

Primary objective was to assess the maternal
complications and outcome of the neonate of antenatally
diagnosed congenital cystic adenomatoid malformation
for the foetus. Secondary objectives were to assess the
need for the surgery in the neonate and rate of respiratory
infections in the childhood.

METHODS

Among pregnant women who delivered at St. John’s
medical college and Hospital, Bangalore, India between
Jan 2011 to Dec 2016, who had prenatal diagnosis of
congenital cystic adenomatoid malformation of the lung
in the foetus. Foetuses with other chest or lung
anomalities were excluded from the study.

All the cases with CCAM was observed for antenatal and
Postnatal complications and neonatal outcome. Data on
maternal age, obstetric history, gestational age at
diagnosis, maternal complication, gestational age at
delivery, mode of delivery antenatal administration of
steroids, size of the cyst at diagnosis, change in the size
of cyst with progression of the pregnancy, CVR ratio,
lung volume, sex of the baby, birth weight, APGAR
score, need for resuscitation, need for ventilator support,
course in NICU, need for surgery, rate of respiratory
infection in the child was collected. The diagnosis of CCAM was determined based on the anomaly scan or ultrasound study at any gestational age and management was planned accordingly. Antenatal mothers presenting with the diagnosis of CCAM were evaluated by a protocol which included screening for obstetric complications in the mother like preeclampsia, Gestational Diabetes Mellitus (GDM) and polyhydramnios. Antenatal steroids were given only in case of preterm delivery. Size of the cyst was analysed by serial ultrasound. Lung volume and CVR ratios were analysed for all the cases.

RESULTS

During the study period 6 years, 13057 women delivered and among them 5 foetuses had CCAM. Incidence of CCAM in our centre was 1 in 2611. The demographic and clinical features of the cares are shown in Table 1.

Table 1: Maternal characteristics.

<table>
<thead>
<tr>
<th>Maternal age in years</th>
<th>Parity</th>
<th>Risk factors</th>
<th>Gestational age at delivery in weeks + Days</th>
<th>Mode of delivery</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>G2P1L1</td>
<td>GDM</td>
<td>39</td>
<td>FTVD</td>
</tr>
<tr>
<td>25</td>
<td>Primi</td>
<td>PPROM</td>
<td>32+4</td>
<td>PTVD</td>
</tr>
<tr>
<td>25</td>
<td>G3P2L0A1</td>
<td>Hypothyroid</td>
<td>38</td>
<td>FTVD</td>
</tr>
<tr>
<td>27</td>
<td>G2P1L1A1</td>
<td>GDM, mild preeclampsia</td>
<td>38+4</td>
<td>Caesarean delivery for MSL grade II</td>
</tr>
<tr>
<td>19</td>
<td>Primi</td>
<td>Nil</td>
<td>40+1</td>
<td>FTVD</td>
</tr>
</tbody>
</table>

*G- Gravida, P- Para, L- Live baby, A- abortion, PPROM- preterm premature rupture of membranes, GDM Gestational diabetes mellitus. FTVD- Full term vaginal delivery PTVD – Preterm Vaginal delivery, MSL – Meconium stained liquor

The age of the pregnant woman, ranged between 19 to 30 years with a mean of 25.2 ± 4.0. Two of them were primigravidae and three were multigravidae. Out of 5 of them, two had GDM, one had mild preeclampsia, and one had hypothyroidism. One case presented with preterm premature rupture of membranes (PPROM) and one had no obstetric complication. Four of them had vaginal deliveries and one underwent emergency Caesarean delivery for grade 2 meconium stained liquor (Table 1).

Table 2: Foetal characteristics.

<table>
<thead>
<tr>
<th>Gestational age at diagnosis in weeks + days</th>
<th>Size of the cyst at diagnosis (in cm)</th>
<th>Increase in the size of cyst</th>
<th>Regression of cyst</th>
<th>CVR *</th>
<th>Lung volume in cc</th>
</tr>
</thead>
<tbody>
<tr>
<td>21+2</td>
<td>4x3</td>
<td>No</td>
<td>No</td>
<td>1.9</td>
<td>67</td>
</tr>
<tr>
<td>26+3</td>
<td>4x3</td>
<td>No</td>
<td>No</td>
<td>1.6</td>
<td>49</td>
</tr>
<tr>
<td>21+1</td>
<td>3x2</td>
<td>No</td>
<td>Yes</td>
<td>1.9</td>
<td>60</td>
</tr>
<tr>
<td>19+3</td>
<td>1x1</td>
<td>Yes</td>
<td>No</td>
<td>1.7</td>
<td>70</td>
</tr>
<tr>
<td>21+1</td>
<td>2x2</td>
<td>No</td>
<td>Yes</td>
<td>1.6</td>
<td>68</td>
</tr>
</tbody>
</table>

*CVR - CCAM volume ratio

The mean gestational age at diagnosis was 21 weeks and 6 days (±2 weeks and 6 days). Four of them were diagnosed during anomaly ultrasound scan. Only one case was diagnosed at gestational age 26 weeks and 3 days of gestation when she presented with polyhydramnios.

Ultrasound was done for the evaluation of increased liquor, which detected the presence of CCAM in the foetus. All the cases were Type 1 CCAM. When the cases were monitored with serial ultrasound studies, only one case had an increase in size of the cyst by 1x1 cm. Two cases showed regression of the cyst. In other two, the size in serial ultrasound remained the same. CVR ratio for all of them was more than 1.6.

There was not much of reduction in lung volume because of the cyst at the time of delivery (Table 2).

Among the 5 pregnancies, one received antenatal steroids for prematurity. Average birth weight of term babies was 3400 grams, one preterm baby weighed 1500 grams at 32 weeks and 4 days of gestations. The preterm delivery was due to preterm premature rupture of membranes (PPROM). Apgar score of term babies was good as it was 8/10 for 1 minute and 9/10 for 5 minutes. Only one preterm baby had low Apgar score and needed invasive
ventilation along with surfactant therapy. Out of four term babies, one baby had CPAP made of ventilation for 48 hours. Three babies underwent surgical resection and all of them had an uneventful post-operative course (Table 3).

Table 3: Neonatal outcomes and follow up.

<table>
<thead>
<tr>
<th>Antenatal steroids</th>
<th>Birth Weight (in grams)</th>
<th>Apgar score (Out of 10)</th>
<th>Sex of the baby</th>
<th>Resuscitation</th>
<th>Ventilation</th>
<th>Course in NICU</th>
<th>Surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>3600</td>
<td>8 9</td>
<td>Girl</td>
<td>BMV</td>
<td>CPAP</td>
<td>48 hours on ventilation</td>
<td>Yes</td>
</tr>
<tr>
<td>Yes</td>
<td>1570</td>
<td>2 4</td>
<td>Boy</td>
<td>BMV</td>
<td>CPAP</td>
<td>Surfactant, Pneumothorax</td>
<td>Yes</td>
</tr>
<tr>
<td>No</td>
<td>2940</td>
<td>8 9</td>
<td>Boy</td>
<td>Nil</td>
<td>No</td>
<td>Monitoring</td>
<td>No</td>
</tr>
<tr>
<td>No</td>
<td>3770</td>
<td>8 9</td>
<td>Girl</td>
<td>Nil</td>
<td>No</td>
<td>Monitoring</td>
<td>Yes</td>
</tr>
<tr>
<td>No</td>
<td>3280</td>
<td>8 9</td>
<td>Girl</td>
<td>Nil</td>
<td>No</td>
<td>Monitoring</td>
<td>No</td>
</tr>
</tbody>
</table>

*BMV-Bag and mask ventilation, CPAP-Continuous positive airway pressure. NICU-Neonatal intensive care unit

DISCUSSION

CCAM is a very rare lung abnormality. CCAM is one of the congenital thoracic malformations (CTM). CCAM is the most common congenital cystic lung diseases. Followed by pulmonary sequestration, bronchogenic cysts, and bronchial atresia. The disease spectrum of CCAM is variable. Lesions with spontaneous regression and complete resolution during third trimester have been reported. On the other side of the spectrum, there have been cases of rapidly growing lung masses with non-immune hydrops and in utero demise have been reported. Very close monitoring during the perinatal period is mandatory to optimize the outcome. The differential diagnosis of congenital thoracic malformations (CTMs) are:

- Congenital cystic adenomatoid malformation (CCAM)
- Congenital diaphragmatic hernia.
- Tracheo-oesophageal fistula
- Pulmonary sequestration
- Cysts
 - bronchogenic cysts
 - foregut cysts
- Tumours
 - neuroblastoma
 - mediastinal teratoma
 - rhabdomyoma
- Atresia - Bronchial with distal degeneration.
- Congenital lobar emphysema
- Congenitally small lungs
- Lung agenesis
- Vascular abnormalities
 - vascular rings
 - pulmonary artery slings.

The incidence of CCAM in our centre was 1 in 2611, which is higher compared to the other reports. This could be due to the referral bias as this is a referral centre for high risk cases due to availability of multidisciplinary approach by high risk obstetric management, neonatal intensive care unit and Paediatric surgeons.

Occurrence of CCAM is sporadic and is not related to genetic predisposition, gender predilection or maternal factors such as race, age or environmental exposures. CCAM is known to cause obstetric complications like pre-eclampsia and polyhydramnios and non-immune hydrops. In present study, two cases had GDM, one among them also had pre-eclampsia. One had PPROM because of polyhydramnios at 32 weeks and 4 days of pregnancy. All five babies had Type 1 CCAM, which is the most common type without any hydrops changes. They were diagnosed during anomaly scan and were monitored with serial ultrasound.

At the time of birth, the lung volume for all the neonates was normal. CVR ratio ranged between 1.6 to 2.0 which did not show any compromise. Two babies showed spontaneous regression at birth. The size of the cyst remained same for two babies and increased in one baby by 1x1cm. All these three neonates, underwent surgical resection. On regular follow up of these 5 babies, ranging from 6 months to 5 years of age, there was no increased rate of pulmonary infection. All the 5 babies had normal growth and development.

Limitation of present study was retrospective in nature. The study numbers were also very small due to the rarity of the disease. This study is conducted in a tertiary care centre, which is a referral centre, hence may not be
applicable to general population as such. There is a need for multi-centre study to evaluate the need for surgical intervention in relatively asymptomatic CCAMs after birth.

CONCLUSION

In summary CCAM of the foetal lung remains a challenge for obstetricians, neonatologists, and paediatric surgeons. Improvements in antenatal serial monitoring is necessary and will aid in enhancing the prediction of outcomes.

The combination of prenatal MRI and serial ultrasound studies will optimise foetal surveillance and help postnatal care.

In neonates with asymptomatic CCAM in whom surgical intervention was not performed, they should be followed up to adolescence and to adulthood, as they can manifest with malignant changes.

Funding: No funding sources
Conflict of interest: None declared
Ethical approval: The study was approved by the Institutional Ethics Committee

REFERENCES
