Angiogenic factors in relation to embryo implantation

Authors

  • Azadeh Bagheri Department of Biochemistry, Kasturba Medical College, Manipal University, Manipal-576104, Karnataka, India
  • Yousef Rezaei Chianeh Department of Biochemistry, Kasturba Medical College, Manipal University, Manipal-576104, Karnataka, India
  • Pratap Kumar Department of Obstetrics & Gynecology, Kasturba Medical College, Manipal University, Manipal-576104, Karnataka, India
  • Pragna Rao Department of Biochemistry, Kasturba Medical College, Manipal University, Manipal-576104, Karnataka, India

Keywords:

HIF-1 (Hypoxia inducible factor-1), VEGF (vascular endothelial growth factor), Embryo implantation, MMP (matrix metalloprotease)

Abstract

Disturbances in uterine blood supply are associated with higher perinatal morbidity and mortality caused by preterm delivery, preeclampsia or intrauterine growth restriction. Adaptation of the uterine vasculature to the rising needs of the fetus occurs through both vasodilation and development of new vessels. Angiogenesis is the process of neovascularization from pre-existing blood vessels in response to hypoxic condition of tissues. The endometrium, decidua and placenta are rich sources of angiogenic growth factors. In general, the angiogenic process is initiated by growth factors such as VEGF, placental growth factor (PlGF) or bFGF. Through a complex signal transduction machinery mediated by respective receptor-tyrosine kinases, an increase in the permeability of the maternal vessels is achieved to permit growth and invasion of endothelial cells. Their chemotactic migration, formation of a vessel lumen, and functional maturation of new capillaries complete the angiogenic process that involves the expression of specific adhesion receptors and extracellular matrix-degrading proteases. During vasculogenesis, endothelial progenitor cells--angioblasts--form a primitive vascular network. This process occurs mainly during fetal development, although recruitment of angioblasts from bone marrow and peripheral blood in response to ischemic insult have been described in adults. In this review article we have described a recent complication related to angiogenic involvement in embryo implantation. 

Metrics

Metrics Loading ...

References

WHO. Definitions and indicators in family planning, maternal and child health and reproductive health. In: WHO, eds. WHO Regional Strategy on Sexual and Reproductive Health. Geneva: World Health Organization, 2001: 1-14.

Zinaman MJ, Clegg DE, Brown CC, O’Connor J, Selevan SG. Estimates of human fertility and pregnancy loss. Fertil Steril. 1996;65:503-9.

Regan L, Rai R. Epidemiology and the medical causes of miscarriage. Baillieres Best Pract Res Clin Obstet Gynecol. 2000;14:839.

Harlap S, Shiono PH. Alcohol, smoking, and incidence of spontaneous abortions in the first and second trimester. Lancet. 1980;2:173.

Wang X, Chen C, Wang L, Chen D, Guang W, French J. Conception, early pregnancy loss, and time to clinical pregnancy: a population-based prospective study. Fertil Steril. 2003;79:577.

Wyatt PR, Owolabi T, Meier C, Huang T. Age-specific risk of fetal loss observed in a second trimester serum screening population. Am J Obstet Gynecol. 2005;192:240.

Boklage CE. Survival probability of human conceptions from fertilization to term. Int J Fertil. 1990;35:75,79.

Lohstroh PN, Overstreet JW, Stewart DR, Nakajima ST, Cragun JR, Boyers SP, et al. Secretion and excretion of human chorionic gonadotropin during early pregnancy. Fertil Steril. 2005;83:1000.

Promislow JH, Baird DD, Wilcox AJ, Weinberg CR. Bleeding following pregnancy loss before 6 weeks’ gestation. Hum Reprod. 2007;22:853.

Jauniaux E, Poston L, Burton GJ. Placental-related diseases of pregnancy: involvement of oxidative stress and implications in human evolution. Hum Reprod Update. 2006;12:747-55.

Jauniaux E, Van Oppenraaij RH, Burton GJ. Obstetric outcome after early placental complications. Curr Opin Obstet Gynecol. 2010;22:452-7.

Jauniaux E, Watson AL, Hempstock J, Bao YP, Skepper JN, Burton GJ. Onset of maternal arterial blood flow and placental oxidative stress; a possible factor in human early pregnancy failure. Am J Pathol. 2000;157:2111-22.

Vacca P, Cantoni C, Vitale M, Prato C, Canegallo F, Fenoglio D, et al. Crosstalk between decidual NK and CD14+ myelomonocytic cells results in induction of Tregs and immunosuppression. Proc Natl Acad Sci USA. 2010;107:11918-23.

Petra C. Arck, Kurt Hecher. Fetomaternal immune cross-talk and its consequences for maternal and offspring’s health. Nature Med. 2013 May;19(5):548-56.

Reynolds LP, Caton JS, Redmer DA, Grazul-Bilska AT, Vonnahme KA, Borowicz PP, et al. Evidence for altered placental blood flow and vascularity in compromised pregnancies. J Physiol. 2006;572:51-8.

Khandhadiya PK, Yousef Rezaei Chianeh, R. Pragna. Role of serum copper and ceruloplasmin level in patients with dysfunctional uterine bleeding. Int J Reprod Contracept Obstet Gynecol. 2014;3(2):333-4.

Harris ED. A requirement for copper in angiogenesis. Nutr Rev. 2004;62(2):60-4.

Girling JE, Rogers PA. Recent advances in endometrial angiogenesis research. Angiogenesis. 2005;8(2):89-99.

McAuslan BR, Reilly W. Endothelial cell phagokinesis in response to specific metal ions. Exp Cell Res. 1980;130:147-57.

Lin MT, Chen YL. Effect of copper ion on collagenase release. Invest Opthomol Vis Sci. 1992;33:558-63.

Afshan Rafi, D. Ramkrishna, K. Sabitha, S. Mohaty, Pragna Rao. Serum copper and vascular endothelial growth factor (VEGF) in dysfunctional uterine bleeding. Am J Biochem Mol Biol. 2011;1(3):284-90.

Takahashi H, Shibuya M. The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clin Sci (Lond). 2005;109:227-41.

Tammela T, Enholm B, Alitalo K, Paavonen K. The biology of vascular endothelial growth factors. Cardiovasc Res. 2005;65:550-63.

Gluzman-Poltorak Z, Cohen T, Herzog Y, Neufeld G. Neuropilin-2 and neuropilin-1 are receptors for the 165-amino acid form of vascular endothelial growth factor (VEGF) and of placenta growth factor-2, but only neuropilin-2 functions as a receptor for the 145-amino acid form of VEGF. J Biol Chem. 2000;275:18040-5.

Fong GH, Rossant J, Gertsenstein M, Breitman ML. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature. 1995;376:66-70.

Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML, et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature. 1995;376:62-6.

Bagheri A, Chianeh YR, Rao P. Role of angiogenic factors in recurrent pregnancy loss. Int J Reprod Contracept Obstet Gynecol. 2013;2:497-502.

Das SK, Chakraborty I, Wang J, Dey SK, Hoffman LH. Expression of vascular endothelial growth factor (VEGF) and VEGF-receptor messenger ribonucleic acids in the peri-implantation rabbit uterus. Biol Reprod. 1997;56:1390-9.

Evans PW, Wheeler T, Anthony FW, Osmond C. A longitudinal study of maternal serum vascular endothelial growth factor in early pregnancy. Hum Reprod. 1998;13:1057-62.

Papazoglou D, Galazios G, Papatheodorou K, Liberis V, Papanas N, Maltezos E, et al. Vascular endothelial growth factor gene polymorphisms and idiopathic recurrent pregnancy loss. Fertil Steril. 2005;83:959-63.

Smith SK. Angiogenesis and implantation. Hum Reprod. 2000;15(Suppl 6):59-66.

Schiessl B, Innes BA, Bulmer JN, Otun HA, Chadwick TJ, Robson SC, et al. Localization of angiogenic growth factors and their receptors in the human placental bed throughout normal human pregnancy. Placenta. 2009;30:79-87.

Li XF, Charnock-Jones DS, Zhang E, Hiby S, Malik S, Day K, et al. Angiogenic growth factor messenger ribonucleic acids in uterine natural killer cells. J Clin Endocrinol Metab. 2001;86:1823-34.

Lash GE, Schiessl B, Kirkley M, Innes BA, Cooper A, Searle RF, et al. Expression of angiogenic growth factors by uterine natural killer cells during early pregnancy. J Leukoc Biol. 2006;80:572-80.x

Jones A, Fujiyama C, Blanche C, Moore JW, Fuggle S, Cranston D, et al. Relation of vascular endothelial growth factor production to expression and regulation of hypoxia-inducible factor-1 alpha and hypoxia inducible factor-2 alpha in human bladder tumors and cell lines. Clin Cancer Res. 2001;7:1263-72.

Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev 1998;12:149-62.

Dachs GU, Tozer GM. Hypoxia modulated gene expression: angiogenesis, metastasis and therapeutic exploitation. Eur J Cancer. 2000;36:1649-60.

Tsuzuki Y, Fukumura D, Oosthuyse B, Koike C, Carmeliet P, Jain RK. Vascular endothelial growth factor (VEGF) modulation by targeting hypoxia inducible factor-1alpha hypoxia response element VEGF cascade differentially regulates vascular response and growth rate in tumors. Cancer Res. 2000;60:6248-52.

Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol. 1996;16:4604-13.

Chianeh YR, Rao P. Molecular and hormonal regulation of angiogenesis in proliferative endometrium. Int J Res Med Sci. 2014;2:1-9.

Ryan HE, Lo J, Johnson RS. HIF-1 alpha is required for solid tumor formation and embryonic vascularization. EMBO (Eur Mol Biol Organ) J. 1998;17:3005-15.

Srinivas V, Zhu X, Salceda S, Nakamura R, Caro J. Hypoxia-inducible factor 1alpha (HIF-1alpha) is a non-heme iron protein. Implications for oxygen sensing. J Biol Chem. 1998;273:18019-22.

Chambers WH, Amoscato AA, Smith MS, Kenniston TW, Herberman RB, Appasamy PM. Prolactin receptor expression by rat NK cells. Nat Immun. 1995;14:145-56

Richard DE, Berra E, Pouyssegur J. Nonhypoxic pathway mediates the induction of hypoxia-inducible factor 1alpha in vascular smooth muscle cells. J Biol Chem. 2000;275:26765-71.

O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, et al. Endostatin: an endogenous inhibitor angiogenesis and tumor growth. Cell. 1997;88(2):277-85.

Ferreras M, Felbor U, Lenharda T, Olsen BR, Delaissé JM. Generation and degradation of human endostatin protein by various proteinases. FEBS Lett. 2000;486(3):247-51.

Dong Z, Kumar R, Yang X, Fidler IJ. Macrophage-derived metalloelastase is responsible for the generation of angiostatin in Lewis lung carcinoma. Cell. 1997;88(6):801-10.

Cornelius LA, Nehring LC, Harding E, Bolanowski M, Welgus HG, Kobayashi DK, et al. Matrix metalloproteinases generate angiostatin: effect on neovascularization. J Immunol. 1998;161(12):6845-52.

Hamano Y, Zeisberg M, Sugimoto H, Lively JC, Maeshima Y, Yang C, et al. Physiological levels of tumstatin,a fragment of collagen IV alpha3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via alpha V beta3 integrin. Cancer Cell. 2003;3(6):589-601.

Pepper MS. Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler Thromb Vasc Biol. 2001;21(7):1104-17.

Cross MJ, Claesson-Walsh L. FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol Sci. 2001;22(4):201-7.

Good DJ, Polverini PJ, Rastinejad F, Le Beau MM, Lemons RS, Frazier WA, et al. A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci U S A. 1990;87(17):6624-8.

Bischof P, Campana A. Molecular mediators of implantation. Baillieres Best Pract Res Clin Obstet Gynecol. 2000;14:801-14.

Librach CL, Werb Z, Fitzgerald ML, Chiu K, Corwin NM, Esteves RA, et al. 92-kD type IV collagenase mediates invasion of human cytotrophoblasts. J Cell Biol. 1991;113:437-49.

Shimonovitz S, Hurwitz A, Dushnik M, Anteby E, Geva-Eldar T, Yagel S. Developmental regulation of the expression of 72 and 92 kd type IV collagenases in human trophoblasts: a possible mechanism for control of trophoblast invasion. Am J Obstet Gynecol. 1994;171:832-8.

Isaka K, Usuda S, Ito H, Sagawa Y, Nakamura H, Nishi H, et al. Expression and activity of matrix metalloproteinase 2 and 9 in human trophoblasts. Placenta. 2003;24:53-64.

Lopata A, Oliva K. Chorionic gonadotrophin secretion by human blastocysts. Hum Reprod. 1993;8:932-8.

Zygmunt M, Hahn D, Munstedt K, Bischof P, Lang U. Invasion of cytotrophoblastic JEG-3 cells is stimulated by hCG in vitro. Placenta. 1998;19:587-93.

Sorachi K, Kumagai S, Sugita M, Yodoi J, Imura H. Enhancing effect of 17 β-estradiol on human NK cell activity. Immunol Lett. 1993;36:31-5.

Szekeres-Bartho J, Hadnagy J, Pacsa AS. The suppressive effect of progesterone on lymphocyte cytotoxicity: unique progesterone sensitivity of pregnancy lymphocytes. J Reprod Immunol. 1985;7:121-8.

Gerli R, Rambotti P, Nicoletti I, Orlandi S, Migliorati G, Riccardi C. Reduced number of natural killer cells in patients with pathological hyperprolactinemia. Clin Exp Immunol. 1986;64:399-406.

Matera L, Ciccarelli E, Cesano A, Veglia F, Miola C, Camanni F. Natural killer activity in hyperprolactinemic patients. Immunopharmacology. 1989;18:143-6.

Berndt S, d’Hauterive SP, Blacher S, Pequeux C, Lorquet S, Munaut C, et al. Angiogenic activity of human chorionic gonadotropin through LH receptor activation on endothelial and epithelial cells of the endometrium. FASEB J. 2006;20:2630-2.

Zygmunt M, Herr F, Keller-Schoenwetter S, Kunzi-Rapp K, Munstedt K, Rao CV, et al. Characterization of human chorionic gonadotropin as a novel angiogenic factor. J Clin Endocrinol Metab. 2002;87:5290-6.

Jauniaux E, Gulbis B, Burton GJ. The human first trimester gestational sac limits rather than facilities oxygen transfer to the foetus: a review. Placenta- Trophoblast Res. 2003;24:S86-93.

Red-Horse K, Zhou Y, Genbacev O, Prakobphol A, Foulk R, McMaster M, et al. Trophoblast differentiation during embryo implantation and formation of the maternal-fetal interface. J Clin Invest. 2004;114:744-54.

Burton GJ. Oxygen, the Janus gas; its effects on human placental development and function. J Anat. 2009;215:27-35.

Torry RJ, Rongish BJ. Angiogenesis in the uterus: potential regulation and relation to tumor angiogenesis. Am J Reprod Immunol. 1992;27:171-9.

Meegdes BH, Ingenhoes R, Peeters LL, Exalto N. Early pregnancy wastage: relationship between chorionic vascularization and embryonic development. Fertil Steril. 1988;49:216-20.

Vuorela P, Carpen O, Tulppala M, Halmesmaki E. VEGF, its receptors and the tie receptors in recurrent miscarriage. Mol Hum Reprod. 2000;6:276-82.

Poole TJ, Coffin JD. Vasculogenesis and angiogenesis: two distinct morphogenetic mechanisms establish embryonic vascular pattern. J Exp Zool. 1989;251(2):224-31.

Risau W, Flamme I. Vasculogenesis. Annu Rev Cell Dev Biol. 1995;11:73-91.

Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, et al. Ischemia- and cytokine-induced mobilization of bone marrow derived endothelial progenitor cells for neovascularization. Nat Med. 1999;5(4):434-8.

Flamme I, Frolich T, Risau W. Molecular mechanisms of vasculogenesis and embryonic angiogenesis. J Cell Physiol. 1997;173(2):206-10.

Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995;1(1):27-31.

Hockel M, Schlenger K, Doctrow S, Kissel T, Vaupel P. Therapeutic angiogenesis. Arch Surg. 1993;128(4):423-9.

Thompson WD, Li WW, Maragoudakis M. The clinical manipulation of angiogenesis: pathology, side-effects, surprises, and opportunities with novel human therapies. J Pathol. 2000;190(3):330-7.

Folkman J, Klagsbrun M. Angiogenic factors. Science. 1987;235(4787):442-7.

Reynolds LP, Killilea SD, Redmer DA. Angiogenesis in the female reproductive system. FASEB J. 1992;6(3):886-92.

Risau W. Mechanisms of angiogenesis. Nature. 1997;386(6626):671-4.

Downloads

Published

2017-02-10

How to Cite

Bagheri, A., Chianeh, Y. R., Kumar, P., & Rao, P. (2017). Angiogenic factors in relation to embryo implantation. International Journal of Reproduction, Contraception, Obstetrics and Gynecology, 3(4), 872–879. Retrieved from https://www.ijrcog.org/index.php/ijrcog/article/view/1197

Issue

Section

Review Articles