Ripe banana peel extract: a natural protector of testicular health in experimental models
DOI:
https://doi.org/10.18203/2320-1770.ijrcog20251951Keywords:
Spermatogenesis, Paraquat, Oxidative stress, Banana peel extract, Reproductive functionAbstract
Background: Spermatogenesis is highly vulnerable to oxidative stress, which can be intensified by environmental toxins like paraquat (PQ), an herbicide known for its potent toxicity, particularly in inducing reactive oxygen species (ROS). Musa sapientum (banana), has garnered attention for its antioxidant properties, particularly in its peel, which contains bioactive compounds such as flavonoids and phenols. This study investigated the protective effects of the ethanolic extract of ripe banana peel on male reproductive health in Wistar rats exposed to paraquat-induced testicular dysfunction.
Methods: After acclimatization and toxicity tests, 25 rats were divided into 5 groups. Group A served as the control, receiving rat feed and distilled water. Group B received 20mg/kg of paraquat. Group C received 1000mg/kg of ethanolic banana peel extract. Groups D and E both received 20mg/kg of paraquat followed by 500mg/kg and 1000mg/kg of banana peel extract respectively for three weeks. Sperm quality and testicular histoarchitecture were assessed, with semen samples collected from the epididymis and testes processed for histological evaluation.
Results: Paraquat exposure significantly reduced sperm motility, count, and testicular weight, while increasing sperm abnormalities and histological damage. These effects were likely due to ROS-induced lipid peroxidation and DNA fragmentation. Treatment with banana peel extract significantly improved sperm motility, count, and testicular histoarchitecture, indicating its antioxidant properties.
Conclusions: This study suggests that banana peel extract has potent antioxidant effects and could alleviate paraquat-induced male infertility.
Metrics
References
Yang L, Cheng J, Xu D, Zhang Z, Hua R, Chen H, et al. Melatonin ameliorates diquat-induced testicular toxicity via reducing oxidative stress, inhibiting apoptosis, and maintaining the integrity of blood-testis barrier in mice. Toxics. 2023;11(2):160. DOI: https://doi.org/10.3390/toxics11020160
Ofoego UC, Ekwujury EU, Nwakama A, Mbagwu IS, Anibeze C1P. Protective and ameliorating effects of methanolic seed extract of Mucuana pruriens on paraquat-induced testicular damage. Adv Life Sci Technol. 2018;63:8–16.
Vahid HA, Mahammad F, Hossin K. Effect of the paraquat herbicide on oogenesis and ovary structure of Wistar rat strain. Adv Environ Biol. 2012;6(3):1006–12.
Liu B, Chen A, Lan J, Ren L, Wei Y, Gao L. Protective mechanism of 1-methylhydantoin against lung injury induced by paraquat poisoning. PLoS One. 2019;14(9):e0222521. DOI: https://doi.org/10.1371/journal.pone.0222521
Gao L, Yuan H, Xu E, Liu J. Toxicology of paraquat and pharmacology of the protective effect of 5-hydroxy-1-methylhydantoin on lung injury caused by paraquat based on metabolomics. Sci Rep. 2020;10(1):1790. DOI: https://doi.org/10.1038/s41598-020-58599-y
Ofoego UC, Nwachukwu CF, Obinwa BN, Ekwujuru EU, Ofoego AN, Ezeagu DK. Hepatoprotective effects of Solanum macrocarpon leaf extract against paraquat-induced liver toxicity in Wistar rats. J Adv Med Med Res. 2025;37(3):268–77. DOI: https://doi.org/10.9734/jammr/2025/v37i35763
Alizadeh S, Anani-sarab G, Amiri H, Hashemi M. Paraquat induced oxidative stress, DNA damage, and cytotoxicity in lymphocytes. Heliyon. 2022;8(7):e09895. DOI: https://doi.org/10.1016/j.heliyon.2022.e09895
Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: a review. Eur J Med Chem. 2015;97:55–74. DOI: https://doi.org/10.1016/j.ejmech.2015.04.040
Zhang Z, Nian Q, Chen G, Cui S, Han Y, Zhang J. Klotho alleviates lung injury caused by paraquat via suppressing ROS/P38 MAPK-regulated inflammatory responses and apoptosis. Oxid Med Cell Longev. 2020;2020:1854206. DOI: https://doi.org/10.1155/2020/1854206
Hu X, Guo R, Chen X, Chen Y. Increased plasma prothrombin time is associated with poor prognosis in patients with paraquat poisoning. J Clin Lab Anal. 2018;32(9):e22597. DOI: https://doi.org/10.1002/jcla.22597
Gawarammana IB, Buckley NA. Medical management of paraquat ingestion. Br J Clin Pharmacol. 2011;72(5):745–57. DOI: https://doi.org/10.1111/j.1365-2125.2011.04026.x
Wesseling C, van Wendel de Joode B, Ruepert C, León C, Monge P, Hermosillo H, Partanen T. Paraquat in developing countries. Int J Occup Environ Health. 2001;7(4):275–86. DOI: https://doi.org/10.1179/107735201800339209
Zhou Y, Zhang H, Xu Y. Testicular function and its role in male fertility: sperm production and hormone regulation. Asian J Androl. 2021;23(3):347–55.
Tremblay ML, Branca JJ. The role of the testes in reproductive function and the endocrine regulation of spermatogenesis. Endocr Rev. 2016;37(6):725–63.
Bhartiya D, Kaushik A. Testicular stem cell dysfunction due to environmental insults could be responsible for deteriorating reproductive health of men. Reprod Sci. 2021;28(3):649–58. DOI: https://doi.org/10.1007/s43032-020-00411-3
Karmakar PC, Ahn JS, Kim YH, Jung SE, Kim BJ, Lee HS, Kim SU, Rahman MS, Pang MG, Ryu BY. Paternal exposure to bisphenol-A transgenerationally impairs testis morphology, germ cell associations, and stemness properties of mouse spermatogonial stem cells. Int J Mol Sci. 2020;21(15):5408. DOI: https://doi.org/10.3390/ijms21155408
Agarwal A, Mulgund A, Hamada A, Chyatte MR. A unique view on male infertility around the globe. Reprod Biol Endocrinol. 2015;13:37. DOI: https://doi.org/10.1186/s12958-015-0032-1
Brugh VM, Lipshultz U. Male factor infertility. Med Clin North Am. 2009;88(2):367–85. DOI: https://doi.org/10.1016/S0025-7125(03)00150-0
Tapsell LC, Hemphill I, Cobiac L. Health benefits of herbs and spices: the past, the present, the future. Med J Aust. 2006;185(4):4–24. DOI: https://doi.org/10.5694/j.1326-5377.2006.tb00548.x
Barua N, Das M. An overview on pharmacological activities of Musa sapientum and Musa paradisiaca. Int J Pharma Prof Res. 2013;4(2):852–8.
Ara N, Basher MK, Hossain MF. Growth, yield, and quality of banana (Musa sapientum L.) influenced by different banana varieties/lines and planting time. Trop Agric Res Ext. 2011;14(2):45–51. DOI: https://doi.org/10.4038/tare.v14i2.4841
Imran P, Abdul B, Farah A. Probing nutritional and functional properties of salted noodles supplemented with ripen banana peel powder. Food Prod Process Nutr. 2022;4:22. DOI: https://doi.org/10.1186/s43014-022-00100-5
Mugo MW, Njue LG. Development of a high value nutritious baking flour from dried ripe banana peels. Asian Food Sci J. 2019;12(3):1–7. DOI: https://doi.org/10.9734/afsj/2019/v12i330083
Hassan UF, Hassan HF, Ushie OA, Ibrahim AH, Tabe NN. Exploring the potentials of banana (Musa sapientum) peels in feed formulation. Int J Adv Res Chem Sci. 2018;5(5):10–14. DOI: https://doi.org/10.20431/2349-0403.0505003
Amal K, Haneen H, Ahmed H, Hadeer A. Anti-microbial and cytotoxic activities of green and ripe banana peel. Biol Biomed J. 2024;2(2):34–42. DOI: https://doi.org/10.21608/bbj.2024.258225.1015
Orietta SB, Ashuin KG, Jeyne MV, Raúl ÁS, Carlos OV, Paola HC, Addí RN. Potential use of banana peel (Musa cavendish) as ingredient for pasta and bakery products. Heliyon. 2022;8(10):e11044. DOI: https://doi.org/10.1016/j.heliyon.2022.e11044
Mishell CM, Alex K, Rebecca W. Screening of phytochemicals, antioxidant activity, and in vivo safety profile of the hydroethanolic peel extract of Musa sapientum. PlantTrends. 2024;2(1):1–15. DOI: https://doi.org/10.5455/pt.2024.01
Someya S, Yoshiki Y, Okubo K. Antioxidant compounds from bananas (Musa cavendish). Food Chem. 2002;79:351–4. DOI: https://doi.org/10.1016/S0308-8146(02)00186-3
National Research Council. Guide for the Care and Use of Laboratory Animals. 8th ed. Washington, DC: The National Academies Press; 2011.
Lorke D. A new approach to practical acute toxicity testing. Arch Toxicol. 1983;54(4):275–87. DOI: https://doi.org/10.1007/BF01234480
Chen Q, Zhang X, Zhao YY, Lu XN, Zheng PS, Xue X. Oxidative damage of the male reproductive system induced by paraquat. J Biochem Mol Toxicol. 2017;31(3):118–23. DOI: https://doi.org/10.1002/jbt.21870
Nasibeh F, Mohammad H, Morteza H, Akram R. Effects of paraquat on testicular histomorphometry of male rats. Biol Forum. 2015;7(2):573–5.
World Health Organization. WHO laboratory manual for the examination of human semen and sperm-cervical mucus interaction. 4th ed. Cambridge: Cambridge University Press; 1999.
Cacciola G, Chioccarelli T, Fasano S, Pierantoni R, Cobellis G. Estrogens and spermiogenesis: new insights from type 1 cannabinoid receptor knockout mice. Int J Endocrinol. 2013;2013:501350. DOI: https://doi.org/10.1155/2013/501350
Roozbeh N, Amirian A, Abdi F, Haghdoost S. A systematic review on use of medicinal plants for male infertility treatment. J Fam Reprod Health. 2021;15(2):74–81. DOI: https://doi.org/10.18502/jfrh.v15i2.6447
Halliwell B, Gutteridge JM. Free Radicals in Biology and Medicine. 3rd ed. Midsomer Norton, Avon, England: Oxford University Press; 1999.
Davis KJ. Protein damage and degradation by oxygen radicals. I. General aspects. J Biol Chem. 1987;262:9895–901. DOI: https://doi.org/10.1016/S0021-9258(18)48018-0
Ijaz MU, Alvi K, Hamza A, Anwar H, Al-Ghanim KA, Riaz MN. Curative effects of tectochrysin on paraquat-instigated testicular toxicity in rats: A biochemical and histopathological based study. Heliyon. 2024;10(3):e25337. DOI: https://doi.org/10.1016/j.heliyon.2024.e25337
Li H, Zhu Q, Wang S, Huang T, Li X, Ni C, et al. Paraquat exposure delays stem/progenitor Leydig cell regeneration in the adult rat testis. Chemosphere. 2019;231:60–71. DOI: https://doi.org/10.1016/j.chemosphere.2019.05.104
Ofoego UC, Ekwujuru EU, Ireka MI, Ofoego AN. Ameliorative effect of Aframomum melegueta (Alligator Pepper) against paraquat-induced testicular damage. World J Pharm Res. 2020;9(5):2105–24.
Ofoego UC, Eze ED, Nweke EO, Obiesie IJ, Mbagwu IS, Okafor EC, et al. Allium cepa (Onion) extract enhances and protects testicular function and architecture against paraquat-induced oxidative damage. Int J Life Sci Pharm Res. 2021;11(1):L194–203.
Dewi DL, Suwondo A, Kusmiyati Y. Improvement of the quality of sperm in mice (Mus musculus) exposed to paraquat dichloride (herbicide) using sunflower seed extract (Helianthus). Int J Allied Med Sci Clin Res. 2020;8(2):432–9.
Quassniti L, Maccari E, Murri O, Bramucci M. Effect of paraquat and glyphosate on steroidogenesis in gonads of the frog Rana esculenta in vitro. Pestic Biochem Physiol. 2009;93:91–5. DOI: https://doi.org/10.1016/j.pestbp.2008.11.006
Ijaz MU, Qamer M, Hamza A, Ahmed H, Afsar T, Abulmeaty M, et al. Sciadopitysin mitigates spermatological and testicular damage instigated by paraquat administration in male albino rats. Sci Rep. 2023;13(1):19753. DOI: https://doi.org/10.1038/s41598-023-46898-z
Asima S, Faizan A, Zara H. Effect of the addition of banana peel flour on the shelf life and antioxidant properties of cookies. 2022;pp.1355–63. DOI: https://doi.org/10.1021/acsfoodscitech.2c00159
De Souza RFV, de Giovani WF. Antioxidant properties of complexes of flavonoids with metal ions. Redox Rep. 2004;9:97–104. DOI: https://doi.org/10.1179/135100004225003897
Nijveldt RJ, van Nood E, van Hoorn DEC, Boelens PG, van Norren K, van Leeuwen PAM. Flavonoids: A review of probable mechanisms of action and potential applications. Am J Clin Nutr. 2001;74:418–25. DOI: https://doi.org/10.1093/ajcn/74.4.418
Engwa GA. Free radicals and the role of plant phytochemicals as antioxidants against oxidative stress-related diseases. Phytochemicals: source of antioxidants and role in disease prevention. BoD–Books on Demand. 2018;7:49-74. DOI: https://doi.org/10.5772/intechopen.76719
Zulkifli B, Akmal M, Wahyuni S, Siregar TN, Gholib G. Identification of active compounds of Kepok banana peel and the effect on testosterone concentration in male rats with high-fat diet. E3S Web Conf. 2020;151:1–5. DOI: https://doi.org/10.1051/e3sconf/202015101026
Dike HO, Etsede JO. Inductions of CaC₂ on sperm morphology and viability of the albino mice (Mus musculus). Int Sch Sci Res Innov. 2016;10(4):182–6.
Allouche-Fitoussi D, Breitbart H. The role of zinc in male fertility. Int J Mol Sci. 2020;21(20):7796. DOI: https://doi.org/10.3390/ijms21207796
Finkelstein M, Etkovitz N, Breitbart H. Ca²⁺ signaling in mammalian spermatozoa. Mol Cell Endocrinol. 2020;516:110953. DOI: https://doi.org/10.1016/j.mce.2020.110953
Zhou X, Shi H, Zhu S, et al. Effects of vitamin E and vitamin C on male infertility: a meta-analysis. Int Urol Nephrol. 2022;54:1793–805. DOI: https://doi.org/10.1007/s11255-022-03237-x
Shibeshil W, Makonnen E, Debella A, Zerihun L. Phytochemical, contraceptive efficacy and safety evaluations of methanolic leaf extract of Achyranthes aspera in rats. Pharmacol. 2006;3:217–24.
Puraikalan Y. Characterization of proximate, phytochemical and antioxidant analysis of banana (Musa sapientum) peels/skins and objective evaluation of ready-to-eat/cook product made with banana peels. Curr Res Nutr Food Sci. 2018;6(2):382–91. DOI: https://doi.org/10.12944/CRNFSJ.6.2.13