Artificial intelligence in assisted reproduction: the future for reproductive medicine
DOI:
https://doi.org/10.18203/2320-1770.ijrcog20252767Keywords:
Machine learning, Deep learning, ICSI, IVF, FertilityAbstract
An important turning point in the development of assisted reproductive technologies has come with the use of artificial intelligence (AI). Because optimising results is such a constant struggle, AI is being used in assisted reproduction. This review presents a concise yet comprehensive overview of AI applications in ART, including its role in computer-assisted semen analysis (CASA), oocyte and embryo evaluation, personalized stimulation protocols, and treatment outcome prediction. AI augments objectivity, enhances prediction precision, and facilitates individualized therapy through the utilization of extensive, intricate datasets. Commercial AI platforms are increasingly integrated into routine IVF workflows, particularly in embryo grading and selection, showing promising preliminary outcomes. The need for openness and fairness in AI research, development, and implementation, as well as the identification of issues and moral quandaries surrounding AI support, are underscored by the lack of legislation addressing AI in healthcare. The goal of the regulatory framework is to strike a middle ground between worldwide innovation and patient safety. Highlighting possible benefits, limits, and ethical issues, this comprehensive research evaluates the advancement of AI in assisted reproduction.
Metrics
References
International Organization for Standardization. Information technology-Artificial intelligence-Artificial intelligence concepts and terminology. ISO/IEC 22989:2022. 1st ed. Geneva: ISO. 2022.
Abdel-Hamid O, Mohamed AR, Jiang H, Deng L, Penn G, Yu D. Convolutional neural networks for speech recognition. IEEE/ACM Trans Audio Speech Lang Process. 2014;22(10):1533-45. DOI: https://doi.org/10.1109/TASLP.2014.2339736
Taigman Y, Yang M, Ranzato M, Wolf L. DeepFace: closing the gap to human-level performance in face verification. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE. 2014;1701-8. DOI: https://doi.org/10.1109/CVPR.2014.220
Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den Driessche G, et al. Mastering the game of Go with deep neural networks and tree search. Nature. 2016;529(7587):484-9. DOI: https://doi.org/10.1038/nature16961
Strayer DL, Cooper JM, Turrill J, Coleman JR, Hopman RJ. The smartphone and the driver’s cognitive workload: A comparison of Apple, Google, and Microsoft’s intelligent personal assistants. Can J Exp Psychol. 2017;71(2):93-110. DOI: https://doi.org/10.1037/cep0000104
Katrakazas C, Quddus M, Chen W-H, Deka L. Real-time motion planning methods for autonomous on-road driving: state-of-the-art and future research directions. Transp Res Part C Emerg Technol. 2015;60:416-42. DOI: https://doi.org/10.1016/j.trc.2015.09.011
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436-44. DOI: https://doi.org/10.1038/nature14539
Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115-8. DOI: https://doi.org/10.1038/nature21056
Letterie G. Artificial intelligence and assisted reproductive technologies: 2023. Ready for prime time? Or not. Fertil Steril. 2023;120(1):32-7. DOI: https://doi.org/10.1016/j.fertnstert.2023.05.146
Fernandez EI, Ferreira AS, Cecílio MHM, Chéles DS, de Souza RCM, Nogueira MFG, et al. Artificial intelligence in the IVF laboratory: overview through the application of different types of algorithms for the classification of reproductive data. J Assist Reprod Genet. 2020;37(10):2359-76. DOI: https://doi.org/10.1007/s10815-020-01881-9
Zaninovic N, Rosenwaks Z. Artificial intelligence in human in vitro fertilization and embryology. Fertil Steril. 2020;114(5):914-20. DOI: https://doi.org/10.1016/j.fertnstert.2020.09.157
AI meets embryos: The future of IVF. Available at: https://www.webmd.com/infertility-and-reproduction/news/20230209/ai-meets-embryos-the-future-of-ivf. Accessed on 22 June 2025.
Wang R, Pan W, Jin L, Li Y, Geng Y, Gao C, et al. Artificial intelligence in reproductive medicine. Reproduction. 2019;158(4):R139-54. DOI: https://doi.org/10.1530/REP-18-0523
Tadepalli SK, Lakshmi PV. Application of machine learning and artificial intelligence techniques for IVF analysis and prediction. In: Research Anthology on Advancements in Women’s Health and Reproductive Rights. IGI Global. 2022;544-55. DOI: https://doi.org/10.4018/978-1-6684-6299-7.ch029
Chow DJ, Wijesinghe P, Dholakia K, Dunning KR. Does artificial intelligence have a role in the IVF clinic? Reprod Fertil. 2021;2(3):C29-34. DOI: https://doi.org/10.1530/RAF-21-0043
Puri A, Mathur R, Sindhu N. Enhancing assisted reproductive technology with AI: addressing concerns and challenges. Int J Sci Res Arch. 2024;11(1):1507-16.
Sadeghi MR. Will artificial intelligence change the future of IVF? J Reprod Infertil. 2022;23(3):139-40. DOI: https://doi.org/10.18502/jri.v23i3.10003
Amann RP, Waberski D. Computer-assisted sperm analysis (CASA): capabilities and potential developments. Theriogenology. 2014;81(1):5-17.e3. DOI: https://doi.org/10.1016/j.theriogenology.2013.09.004
Wang C, Cao S, Tu W, Gong H, Lu G, Xing F. Artificial intelligence in reproductive medicine: A review of the current status. Hum Reprod Update. 2019;25(6):733-48.
Mapari SA, Shrivastava D, Bedi GN, Utkarsh P, Aman G, Paschyanti RK, et al. Revolutionizing reproduction: the impact of robotics and artificial intelligence (AI) in assisted reproductive technology: a comprehensive review. Cureus. 2024;16(6):e63072. DOI: https://doi.org/10.7759/cureus.63072
Hanassab S, Abbara A, Yeung AC, Margaritis V, Tsaneva-Atanasova K, Tom WK, et al. The prospect of artificial intelligence to personalize assisted reproductive technology. NPJ Digit Med. 2024;7(1):55. DOI: https://doi.org/10.1038/s41746-024-01006-x
Canon C, Leibner L, Fanton M, Zeyu C, Vaishali S, Joseph AL, et al. Optimizing oocyte yield utilizing a machine learning model for dose and trigger decisions: a multi-center, prospective study. Sci Rep. 2024;14(1):18721. DOI: https://doi.org/10.1038/s41598-024-69165-1
Koplin JJ, Johnston M, Webb ANS, Whittaker A, Mills C. Ethics of artificial intelligence in embryo assessment: mapping the terrain. Hum Reprod. 2025;40(2):179-85. DOI: https://doi.org/10.1093/humrep/deae264
Tran D, Cooke S, Illingworth PJ, Gardner DK. Deep learning as a predictive tool for fetal heart pregnancy following time-lapse incubation and blastocyst transfer. Hum Reprod. 2019;34(6):1011-8. DOI: https://doi.org/10.1093/humrep/dez064
Khosravi P, Kazemi E, Zhan Q, Malmsten JE, Toschi M, Zisimopoulos P, et al. Deep learning enables robust assessment and selection of human blastocysts after in vitro fertilization. NPJ Digit Med. 2019;2:21. DOI: https://doi.org/10.1038/s41746-019-0096-y
Rodríguez Fuentes A, Rouleau JP, Vásquez D, Hernández J, Naftolin F, Palumbo A, et al. Volume based follicular output rate improves prediction of the number of mature oocytes: a prospective comparative study. Fertil Steril. 2022;118(5):885-92. DOI: https://doi.org/10.1016/j.fertnstert.2022.07.017
VerMilyea M, Hall JM, Diakiw SM, Johnston A, Nguyen T, Perugini D, et al. Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF. Hum Reprod. 2020;35(4):770-84. DOI: https://doi.org/10.1093/humrep/deaa013
Xu X, Jiang Y, Du J, Song C, Hu Y. Development and validation of a prediction model for suboptimal ovarian response in PCOS patients undergoing GnRH-antagonist protocol in IVF/ICSI cycles. J Ovarian Res. 2024;17(1):116.
Wu B, Li Q, Kuang Z, Hongyuan G, Xinyi L, Haiyan G, et al. ILETIA: an AI-enhanced method for individualized trigger-oocyte pickup interval estimation of progestin-primed ovarian stimulation protocol. arXiv. 2025.
Fanton M, Nutting V, Solano F, Maeder York P, Hariton E, Barash O, et al. An interpretable machine learning model for individualized gonadotropin starting dose selection during ovarian stimulation. Reprod Biomed Online. 2022;45(6):1152-9. DOI: https://doi.org/10.1016/j.rbmo.2022.07.010
Xu X, Wang M, Chen G, et al. Predicting suboptimal ovarian response using a nomogram based on machine learning algorithms in PCOS patients. J Ovarian Res. 2024;17(1):116. DOI: https://doi.org/10.1186/s13048-024-01437-w
Olympus Corporation. Olympus develops AI technology for sperm analysis. 2019. Available at: https://www.olympus-global.com/news/2019/nr01449.html. Accessed on 22 June 2025.
Dimitriadis I. Handling inter center variability and dataset adaptation in AI embryo models trained across IVF clinics. Birth of the AI Baby: A Technological Paradigm Shift in Human Reproduction and IVF. PUIRP. 2025;3(2):27.
Li J, Zhang Y, Huang B, Yu-Lin T, Wen-Jun Z, Zeng-Hui H, et al. Comparison of clinical outcomes, risks, and costs for donor IVF cycles with and without AI assistance in China. J Clin Med. 2023;12(3):954. DOI: https://doi.org/10.3390/jcm12030954
U.S. Food and Drug Administration. Artificial Intelligence and Machine Learning in Software as a Medical Device. 2021. Available at: https://www.fda.gov/media/145022/download. Accessed on 18 June 2025.
European Commission. Proposal for a Regulation laying down harmonized rules on Artificial Intelligence (Artificial Intelligence Act). Brussels: EC. 2021.
Benjamens S, Dhunnoo P, Meskó B. The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database. NPJ Digit Med. 2020;3:118. DOI: https://doi.org/10.1038/s41746-020-00324-0
Illingworth PJ, Venetis C, Gardner DK, Nelson SM, Berntsen J, Larman MG, et al. Deep learning versus manual morphology-based embryo selection in IVF: a randomized, double-blind noninferiority trial. Nat Med. 2024;30(11):3114-20. DOI: https://doi.org/10.1038/s41591-024-03166-5
Pham T. Ethical and legal considerations in healthcare AI: innovation and policy for safe and fair use. R Soc Open Sci. 2025;12(5):241873. DOI: https://doi.org/10.1098/rsos.241873
Messaoud KB, Guibert J, Bouyer J, de La Rochebrochard E. Strong social disparities in access to IVF/ICSI despite free cost of treatment: a French population-based nationwide cohort study. BMC Womens Health. 2023;23(1):621. DOI: https://doi.org/10.1186/s12905-023-02784-4
Xu F, Ma Q, Lai P, Hu L, Gao C, Xu Q, et al. An explainable ultrasound-based machine learning model for predicting reproductive outcomes after frozen embryo transfer. Reprod Biomed Online. 2025;50(5):104743. DOI: https://doi.org/10.1016/j.rbmo.2024.104743