Artificial intelligence in assisted reproduction: the future for reproductive medicine

Authors

  • Barry Cooper Hynniewta Department of Clinical Embryology, MOMSOON Fertility and IVF Centre, Bangalore, Karnataka, India
  • Ferrill Navas Department of Clinical Embryology, Yenepoya (Deemed to-be University), Mangalore, Karnataka, India
  • Kathrina Marbaniang Department of Medicine, Shillong Civil Hospital, Meghalaya, India

DOI:

https://doi.org/10.18203/2320-1770.ijrcog20252767

Keywords:

Machine learning, Deep learning, ICSI, IVF, Fertility

Abstract

An important turning point in the development of assisted reproductive technologies has come with the use of artificial intelligence (AI). Because optimising results is such a constant struggle, AI is being used in assisted reproduction. This review presents a concise yet comprehensive overview of AI applications in ART, including its role in computer-assisted semen analysis (CASA), oocyte and embryo evaluation, personalized stimulation protocols, and treatment outcome prediction. AI augments objectivity, enhances prediction precision, and facilitates individualized therapy through the utilization of extensive, intricate datasets. Commercial AI platforms are increasingly integrated into routine IVF workflows, particularly in embryo grading and selection, showing promising preliminary outcomes. The need for openness and fairness in AI research, development, and implementation, as well as the identification of issues and moral quandaries surrounding AI support, are underscored by the lack of legislation addressing AI in healthcare. The goal of the regulatory framework is to strike a middle ground between worldwide innovation and patient safety. Highlighting possible benefits, limits, and ethical issues, this comprehensive research evaluates the advancement of AI in assisted reproduction.

Metrics

Metrics Loading ...

References

International Organization for Standardization. Information technology-Artificial intelligence-Artificial intelligence concepts and terminology. ISO/IEC 22989:2022. 1st ed. Geneva: ISO. 2022.

Abdel-Hamid O, Mohamed AR, Jiang H, Deng L, Penn G, Yu D. Convolutional neural networks for speech recognition. IEEE/ACM Trans Audio Speech Lang Process. 2014;22(10):1533-45. DOI: https://doi.org/10.1109/TASLP.2014.2339736

Taigman Y, Yang M, Ranzato M, Wolf L. DeepFace: closing the gap to human-level performance in face verification. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE. 2014;1701-8. DOI: https://doi.org/10.1109/CVPR.2014.220

Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den Driessche G, et al. Mastering the game of Go with deep neural networks and tree search. Nature. 2016;529(7587):484-9. DOI: https://doi.org/10.1038/nature16961

Strayer DL, Cooper JM, Turrill J, Coleman JR, Hopman RJ. The smartphone and the driver’s cognitive workload: A comparison of Apple, Google, and Microsoft’s intelligent personal assistants. Can J Exp Psychol. 2017;71(2):93-110. DOI: https://doi.org/10.1037/cep0000104

Katrakazas C, Quddus M, Chen W-H, Deka L. Real-time motion planning methods for autonomous on-road driving: state-of-the-art and future research directions. Transp Res Part C Emerg Technol. 2015;60:416-42. DOI: https://doi.org/10.1016/j.trc.2015.09.011

LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436-44. DOI: https://doi.org/10.1038/nature14539

Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115-8. DOI: https://doi.org/10.1038/nature21056

Letterie G. Artificial intelligence and assisted reproductive technologies: 2023. Ready for prime time? Or not. Fertil Steril. 2023;120(1):32-7. DOI: https://doi.org/10.1016/j.fertnstert.2023.05.146

Fernandez EI, Ferreira AS, Cecílio MHM, Chéles DS, de Souza RCM, Nogueira MFG, et al. Artificial intelligence in the IVF laboratory: overview through the application of different types of algorithms for the classification of reproductive data. J Assist Reprod Genet. 2020;37(10):2359-76. DOI: https://doi.org/10.1007/s10815-020-01881-9

Zaninovic N, Rosenwaks Z. Artificial intelligence in human in vitro fertilization and embryology. Fertil Steril. 2020;114(5):914-20. DOI: https://doi.org/10.1016/j.fertnstert.2020.09.157

AI meets embryos: The future of IVF. Available at: https://www.webmd.com/infertility-and-reproduction/news/20230209/ai-meets-embryos-the-future-of-ivf. Accessed on 22 June 2025.

Wang R, Pan W, Jin L, Li Y, Geng Y, Gao C, et al. Artificial intelligence in reproductive medicine. Reproduction. 2019;158(4):R139-54. DOI: https://doi.org/10.1530/REP-18-0523

Tadepalli SK, Lakshmi PV. Application of machine learning and artificial intelligence techniques for IVF analysis and prediction. In: Research Anthology on Advancements in Women’s Health and Reproductive Rights. IGI Global. 2022;544-55. DOI: https://doi.org/10.4018/978-1-6684-6299-7.ch029

Chow DJ, Wijesinghe P, Dholakia K, Dunning KR. Does artificial intelligence have a role in the IVF clinic? Reprod Fertil. 2021;2(3):C29-34. DOI: https://doi.org/10.1530/RAF-21-0043

Puri A, Mathur R, Sindhu N. Enhancing assisted reproductive technology with AI: addressing concerns and challenges. Int J Sci Res Arch. 2024;11(1):1507-16.

Sadeghi MR. Will artificial intelligence change the future of IVF? J Reprod Infertil. 2022;23(3):139-40. DOI: https://doi.org/10.18502/jri.v23i3.10003

Amann RP, Waberski D. Computer-assisted sperm analysis (CASA): capabilities and potential developments. Theriogenology. 2014;81(1):5-17.e3. DOI: https://doi.org/10.1016/j.theriogenology.2013.09.004

Wang C, Cao S, Tu W, Gong H, Lu G, Xing F. Artificial intelligence in reproductive medicine: A review of the current status. Hum Reprod Update. 2019;25(6):733-48.

Mapari SA, Shrivastava D, Bedi GN, Utkarsh P, Aman G, Paschyanti RK, et al. Revolutionizing reproduction: the impact of robotics and artificial intelligence (AI) in assisted reproductive technology: a comprehensive review. Cureus. 2024;16(6):e63072. DOI: https://doi.org/10.7759/cureus.63072

Hanassab S, Abbara A, Yeung AC, Margaritis V, Tsaneva-Atanasova K, Tom WK, et al. The prospect of artificial intelligence to personalize assisted reproductive technology. NPJ Digit Med. 2024;7(1):55. DOI: https://doi.org/10.1038/s41746-024-01006-x

Canon C, Leibner L, Fanton M, Zeyu C, Vaishali S, Joseph AL, et al. Optimizing oocyte yield utilizing a machine learning model for dose and trigger decisions: a multi-center, prospective study. Sci Rep. 2024;14(1):18721. DOI: https://doi.org/10.1038/s41598-024-69165-1

Koplin JJ, Johnston M, Webb ANS, Whittaker A, Mills C. Ethics of artificial intelligence in embryo assessment: mapping the terrain. Hum Reprod. 2025;40(2):179-85. DOI: https://doi.org/10.1093/humrep/deae264

Tran D, Cooke S, Illingworth PJ, Gardner DK. Deep learning as a predictive tool for fetal heart pregnancy following time-lapse incubation and blastocyst transfer. Hum Reprod. 2019;34(6):1011-8. DOI: https://doi.org/10.1093/humrep/dez064

Khosravi P, Kazemi E, Zhan Q, Malmsten JE, Toschi M, Zisimopoulos P, et al. Deep learning enables robust assessment and selection of human blastocysts after in vitro fertilization. NPJ Digit Med. 2019;2:21. DOI: https://doi.org/10.1038/s41746-019-0096-y

Rodríguez Fuentes A, Rouleau JP, Vásquez D, Hernández J, Naftolin F, Palumbo A, et al. Volume based follicular output rate improves prediction of the number of mature oocytes: a prospective comparative study. Fertil Steril. 2022;118(5):885-92. DOI: https://doi.org/10.1016/j.fertnstert.2022.07.017

VerMilyea M, Hall JM, Diakiw SM, Johnston A, Nguyen T, Perugini D, et al. Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF. Hum Reprod. 2020;35(4):770-84. DOI: https://doi.org/10.1093/humrep/deaa013

Xu X, Jiang Y, Du J, Song C, Hu Y. Development and validation of a prediction model for suboptimal ovarian response in PCOS patients undergoing GnRH-antagonist protocol in IVF/ICSI cycles. J Ovarian Res. 2024;17(1):116.

Wu B, Li Q, Kuang Z, Hongyuan G, Xinyi L, Haiyan G, et al. ILETIA: an AI-enhanced method for individualized trigger-oocyte pickup interval estimation of progestin-primed ovarian stimulation protocol. arXiv. 2025.

Fanton M, Nutting V, Solano F, Maeder York P, Hariton E, Barash O, et al. An interpretable machine learning model for individualized gonadotropin starting dose selection during ovarian stimulation. Reprod Biomed Online. 2022;45(6):1152-9. DOI: https://doi.org/10.1016/j.rbmo.2022.07.010

Xu X, Wang M, Chen G, et al. Predicting suboptimal ovarian response using a nomogram based on machine learning algorithms in PCOS patients. J Ovarian Res. 2024;17(1):116. DOI: https://doi.org/10.1186/s13048-024-01437-w

Olympus Corporation. Olympus develops AI technology for sperm analysis. 2019. Available at: https://www.olympus-global.com/news/2019/nr01449.html. Accessed on 22 June 2025.

Dimitriadis I. Handling inter center variability and dataset adaptation in AI embryo models trained across IVF clinics. Birth of the AI Baby: A Technological Paradigm Shift in Human Reproduction and IVF. PUIRP. 2025;3(2):27.

Li J, Zhang Y, Huang B, Yu-Lin T, Wen-Jun Z, Zeng-Hui H, et al. Comparison of clinical outcomes, risks, and costs for donor IVF cycles with and without AI assistance in China. J Clin Med. 2023;12(3):954. DOI: https://doi.org/10.3390/jcm12030954

U.S. Food and Drug Administration. Artificial Intelligence and Machine Learning in Software as a Medical Device. 2021. Available at: https://www.fda.gov/media/145022/download. Accessed on 18 June 2025.

European Commission. Proposal for a Regulation laying down harmonized rules on Artificial Intelligence (Artificial Intelligence Act). Brussels: EC. 2021.

Benjamens S, Dhunnoo P, Meskó B. The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database. NPJ Digit Med. 2020;3:118. DOI: https://doi.org/10.1038/s41746-020-00324-0

Illingworth PJ, Venetis C, Gardner DK, Nelson SM, Berntsen J, Larman MG, et al. Deep learning versus manual morphology-based embryo selection in IVF: a randomized, double-blind noninferiority trial. Nat Med. 2024;30(11):3114-20. DOI: https://doi.org/10.1038/s41591-024-03166-5

Pham T. Ethical and legal considerations in healthcare AI: innovation and policy for safe and fair use. R Soc Open Sci. 2025;12(5):241873. DOI: https://doi.org/10.1098/rsos.241873

Messaoud KB, Guibert J, Bouyer J, de La Rochebrochard E. Strong social disparities in access to IVF/ICSI despite free cost of treatment: a French population-based nationwide cohort study. BMC Womens Health. 2023;23(1):621. DOI: https://doi.org/10.1186/s12905-023-02784-4

Xu F, Ma Q, Lai P, Hu L, Gao C, Xu Q, et al. An explainable ultrasound-based machine learning model for predicting reproductive outcomes after frozen embryo transfer. Reprod Biomed Online. 2025;50(5):104743. DOI: https://doi.org/10.1016/j.rbmo.2024.104743

Downloads

Published

2025-08-28

How to Cite

Hynniewta, B. C., Navas, F., & Marbaniang, K. (2025). Artificial intelligence in assisted reproduction: the future for reproductive medicine. International Journal of Reproduction, Contraception, Obstetrics and Gynecology, 14(9), 3181–3188. https://doi.org/10.18203/2320-1770.ijrcog20252767

Issue

Section

Review Articles