Microbiome matters: the hidden influence of gut flora on male reproductive health

Authors

  • Ferrill Navas Department of Clinical Embryology, Yenepoya University, Mangalore, Karnataka, India
  • Barry C. Hynniewta Department of Clinical Embryology, MOMSOON Fertility and IVF Centre, Bangalore, Karnataka, India
  • Kathrina Marbaniang Department of Medicine, Shillong Civil Hospital, Shillong, Meghalaya, India

DOI:

https://doi.org/10.18203/2320-1770.ijrcog20252374

Keywords:

Microbiota, Dysbiosis, Male infertility, Semen microbiome NGS

Abstract

Male infertility is a complex disorder that affects about half of all cases worldwide. An increasing amount of research shows that the human microbiome has a significant impact on male reproductive health. Current understanding of how the gut, semen, and testicular bacteria affect reproductive results is studied in this review. Although bacteriospermia and poor semen parameters were linked in early culture-based investigations, microbial cultivation limits forced the use of sophisticated molecular approaches. The previous presumption of sterility has subsequently been challenged by metagenomic sequencing, especially next-generation sequencing (NGS), which has shown complex microbial communities in semen and testes. Changes in microbial composition, particularly in semen samples linked to assisted reproductive technologies (ART) and idiopathic non-obstructive azoospermia (iNOA), indicate dysbiosis may jeopardise sperm quality and the effectiveness of ART. Furthermore, a reciprocal relationship impacting hormonal balance and fertility is highlighted by interactions between the gut microbiota and androgen metabolism via the brain–gut–testis axis. Although the exact mechanisms are yet unknown, prebiotic and probiotic treatments have demonstrated promise in enhancing sperm motility, morphology, and DNA integrity. Current research is hindered by uneven methodology, a dearth of longitudinal data, and a lack of functional evaluations of spermatozoa, despite promising results. To demonstrate causality and therapeutic promise, future microbiome research must include stringent controls, longitudinal sampling, and thorough fertility evaluations. Knowing how the microbiome affects male fertility may help develop new probiotic-based therapies and diagnostic biomarkers, especially for cases of idiopathic infertility.

Metrics

Metrics Loading ...

References

Ursell LK, Haiser HJ, Van Treuren W, Garg N, Reddivari L, Vanamala J, et al. The intestinal metabolome: an intersection between microbiota and host. Gastroenterology. 2014;146(6):1470-6. DOI: https://doi.org/10.1053/j.gastro.2014.03.001

Human Microbiome Jumpstart Reference Strains Consortium; Nelson KE, Weinstock GM, Highlander SK, Worley KC, Creasy HH, Wortman JR, et al. A catalog of reference genomes from the human microbiome. Science. 2010;328(5981):994-9.

Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Reddy DN. Role of the normal gut microbiota. World J Gastroenterol. 2015;21(29):8787-803. DOI: https://doi.org/10.3748/wjg.v21.i29.8787

Yang X, Lu D, Zhuo J, Lin Z, Yang M, Xu X. The gut-liver axis in immune remodeling: new insight into liver diseases. Int J Biol Sci. 2020;16(13):2357-66. DOI: https://doi.org/10.7150/ijbs.46405

Berg G, Rybakova D, Fischer D, Cernava T, Vergès M-CC, Charles T, et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome. 2020;8(1):103. DOI: https://doi.org/10.1186/s40168-020-00875-0

Leslie SW, Soon-Sutton TL, Khan MAB. Male Infertility. In: StatPearls. Treasure Island (FL): StatPearls Publishing. 2024.

Shih KW, Shen PY, Wu CC, Kang YN. Testicular versus percutaneous epididymal sperm aspiration for patients with obstructive azoospermia: a systematic review and meta-analysis. Transl Androl Urol. 2019;8(6):631-40. DOI: https://doi.org/10.21037/tau.2019.11.20

Alqawasmeh O, Jiang XT, Cong L, Wu W, Leung MBW, Chung JPW, et al. The microbiome and male infertility: looking into the past to move forward. Hum Fertil (Camb). 2022;26(3):450-62. DOI: https://doi.org/10.1080/14647273.2022.2098540

Mashaly M, Masallat DT, Elkholy AA, Abdel-Hamid IA, Mostafa T. Seminal Corynebacterium strains in infertile men with and without leucocytospermia. Andrologia. 2016;48(3):355-9. DOI: https://doi.org/10.1111/and.12457

Bukharin OV, Perunova NB, Ivanova EV, Chaynikova IN, Bekpergenova AV, Bondarenko TA, et al. Semen microbiota and cytokines of healthy and infertile men. Asian J Androl. 2022;24(4):353. DOI: https://doi.org/10.4103/aja202169

Nasrallah YS, Anani M, Omar HH, Hashem AA. Microbiological profiles of semen culture in male infertility. Hum Androl. 2018;8(2):34-42. DOI: https://doi.org/10.21608/ha.2018.3207.1023

Gdoura R, Kchaou W, Ammar-Keskes L, Chakroun N, Sellemi A, Znazen A, et al. Assessment of Chlamydia trachomatis, Ureaplasma urealyticum, Ureaplasma parvum, Mycoplasma hominis, and Mycoplasma genitalium in semen and first void urine specimens of asymptomatic male partners of infertile couples. J Androl. 2008;29(2):198-206. DOI: https://doi.org/10.2164/jandrol.107.003566

Motamedifar M, Malekzadegan Y, Namdari P, Dehghani B, Jahromi BN, Sarvari J. The prevalence of bacteriospermia in infertile men and association with semen quality in Southwestern Iran. Infect Disord Drug Targets. 2020;20(2):198-202. DOI: https://doi.org/10.2174/1871526519666181123182116

Peterson J, Garges S, Giovanni M, McInnes P, Wang L, Schloss JA, et al. The NIH Human Microbiome Project. Genome Res. 2009;19(12):2317-23. DOI: https://doi.org/10.1101/gr.096651.109

Franasiak JM, Scott RT Jr. Reproductive tract microbiome in assisted reproductive technologies. Fertil Steril. 2015;104(6):1364-71. DOI: https://doi.org/10.1016/j.fertnstert.2015.10.012

Alfano M, Ferrarese R, Locatelli I, Ventimiglia E, Ippolito S, Gallina P, et al. Testicular microbiome in azoospermic men: first evidence of the impact of an altered microenvironment. Hum Reprod. 2018;33(7):1212-7. DOI: https://doi.org/10.1093/humrep/dey116

Brandão PM, Gonçalves-Henriques M, Ceschin NM. Seminal and testicular microbiome and male fertility: a systematic review. Porto Biomed J. 2021;6(6):e151. DOI: https://doi.org/10.1097/j.pbj.0000000000000151

Štšepetova J, Baranova J, Simm J, Parm Ü, Rööp T, Sokmann S, et al. The complex microbiome from native semen to embryo culture environment in human in vitro fertilization procedure. Reprod Biol Endocrinol. 2020;18(1):3. DOI: https://doi.org/10.1186/s12958-019-0562-z

Wittemer C, Bettahar-Lebugle K, Ohl J, Rongières C, Viville S, Nisand I. Abnormal bacterial colonisation of the vagina and implantation during assisted reproduction. Gynecol Obstet Fertil. 2004;32(2):135-9. DOI: https://doi.org/10.1016/j.gyobfe.2003.11.017

Okwelogu SI, Ikechebelu JI, Agbakoba NR, Anukam KC. Microbiome compositions from infertile couples seeking in vitro fertilization using 16S rRNA gene sequencing methods: any correlation to clinical outcomes? Front Cell Infect Microbiol. 2021;11:709372. DOI: https://doi.org/10.3389/fcimb.2021.709372

Ricci S, De Giorgi S, Lazzeri E, Luddi A, Rossi S, Piomboni P, et al. Impact of asymptomatic genital tract infections on in vitro fertilization (IVF) outcome. PLoS One. 2018;13(11):e0207684. DOI: https://doi.org/10.1371/journal.pone.0207684

Amato V, Papaleo E, Pasciuta R, Viganò P, Ferrarese R, Clementi N, et al. Differential composition of vaginal microbiome, but not of seminal microbiome, is associated with successful intrauterine insemination in couples with idiopathic infertility: a prospective observational study. Open Forum Infect Dis. 2020;7(1):ofz525. DOI: https://doi.org/10.1093/ofid/ofz525

Alqawasmeh OAM, Jiang XT, Cong L, Wu W, Leung MBW, Chung JPW, et al. Vertical transmission of microbiomes into embryo culture media and its association with assisted reproductive outcomes. Reprod Biomed Online. 2024;49:103977. DOI: https://doi.org/10.1016/j.rbmo.2024.103977

Hevia A, Milani C, López P, Cuervo A, Arboleya S, Duranti S, et al. Intestinal dysbiosis associated with systemic lupus erythematosus. mBio. 2014;5(5):e01548-14. DOI: https://doi.org/10.1128/mBio.01548-14

Mu Q, Zhang H, Liao X, Lin K, Liu H, Edwards MR, et al. Control of lupus nephritis by changes of gut microbiota. Microbiome. 2017;5(1):73. DOI: https://doi.org/10.1186/s40168-017-0300-8

Kriegel MA, Sefik E, Hill JA, Wu HJ, Benoist C, Mathis D. Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice. Proc Natl Acad Sci U S A. 2011;108(28):11548-53. DOI: https://doi.org/10.1073/pnas.1108924108

Dominianni C, Sinha R, Goedert JJ, Pei Z, Yang L, Hayes RB, et al. Sex, body mass index, and dietary fiber intake influence the human gut microbiome. PLoS One. 2015;10(4):e0124599. DOI: https://doi.org/10.1371/journal.pone.0124599

Gloux K, Berteau O, El Oumami H, Béguet F, Leclerc M, Doré J. A metagenomic β-glucuronidase uncovers a core adaptive function of the human intestinal microbiome. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4539-46. DOI: https://doi.org/10.1073/pnas.1000066107

Harada N, Hanaoka R, Hanada K, Izawa T, Inui H, Yamaji R. Hypogonadism alters cecal and fecal microbiota in male mice. Gut Microbes. 2016;7(6):533-9. DOI: https://doi.org/10.1080/19490976.2016.1239680

Colldén H, Landin A, Wallenius V, Elebring E, Fändriks L, Nilsson ME, et al. The gut microbiota is a major regulator of androgen metabolism in intestinal contents. Am J Physiol Endocrinol Metab. 2019;317(6):E1182-91. DOI: https://doi.org/10.1152/ajpendo.00338.2019

Bélanger A, Pelletier G, Labrie F, Barbier O, Chouinard S. Inactivation of androgens by UDP-glucuronosyltransferase enzymes in humans. Trends Endocrinol Metab. 2003;14(10):473-9. DOI: https://doi.org/10.1016/j.tem.2003.10.005

Ridlon JM, Ikegawa S, Alves JM, Zhou B, Kobayashi A, Iida T, et al. Clostridium scindens: a human gut microbe with a high potential to convert glucocorticoids into androgens. J Lipid Res. 2013;54(9):2437-49. DOI: https://doi.org/10.1194/jlr.M038869

Diviccaro S, Giatti S, Borgo F, Falvo E, Caruso D, Garcia-Segura LM, et al. Steroidogenic machinery in the adult rat colon. J Steroid Biochem Mol Biol. 2020;203:105732. DOI: https://doi.org/10.1016/j.jsbmb.2020.105732

Ly LK, Rowles JL 3rd, Paul HM, Alves JMP, Yemm C, Wolf PM, et al. Bacterial steroid-17,20-desmolase is a taxonomically rare enzymatic pathway that converts prednisone to 1,4-androstanediene-3,11,17-trione, a metabolite that causes proliferation of prostate cancer cells. J Steroid Biochem Mol Biol. 2020;199:105567. DOI: https://doi.org/10.1016/j.jsbmb.2019.105567

Diviccaro S, Giatti S, Borgo F, Barcella M, Borghi E, Trejo JL, et al. Treatment of male rats with finasteride, an inhibitor of 5alpha-reductase enzyme, induces long-lasting effects on depressive-like behavior, hippocampal neurogenesis, neuroinflammation and gut microbiota composition. Psychoneuroendocrinology. 2019;99:206-15. DOI: https://doi.org/10.1016/j.psyneuen.2018.09.021

Arroyo P, Ho BS, Sau L, Kelley ST, Thackray VG. Letrozole treatment of pubertal female mice results in activational effects on reproduction, metabolism and the gut microbiome. PLoS One. 2019;14(9):e0223274. DOI: https://doi.org/10.1371/journal.pone.0223274

Jones SE, Versalovic J. Probiotic Lactobacillus reuteri biofilms produce antimicrobial and anti-inflammatory factors. BMC Microbiol. 2009;9:35. DOI: https://doi.org/10.1186/1471-2180-9-35

Yan F, Cao H, Cover TL, Whitehead R, Washington MK, Polk DB. Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. Gastroenterology. 2007;132(2):562-75. DOI: https://doi.org/10.1053/j.gastro.2006.11.022

Yan F, Cao H, Cover TL, Washington MK, Shi Y, Liu L, et al. Colon-specific delivery of a probiotic-derived soluble protein ameliorates intestinal inflammation in mice through an EGFR-dependent mechanism. J Clin Invest. 2011;121(6):2242-53. DOI: https://doi.org/10.1172/JCI44031

La Fata G, Weber P, Mohajeri MH. Probiotics and the gut immune system: indirect regulation. Probiotics Antimicrob Proteins. 2018;10(1):11-21. DOI: https://doi.org/10.1007/s12602-017-9322-6

Rousseaux C, Thuru X, Gelot A, arnich N, Neut C, Dubuquoy L, et al. Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors. Nat Med. 2007;13(1):35-7. DOI: https://doi.org/10.1038/nm1521

Valcarce DG, Genovés S, Riesco MF, Martorell P, Herráez MP, Ramón D, et al. Probiotic administration improves sperm quality in asthenozoospermic human donors. Benef Microbes. 2017;8(2):193-206. DOI: https://doi.org/10.3920/BM2016.0122

Abbasi B, Abbasi H, Niroumand H. Synbiotic (FamiLact) administration in idiopathic male infertility enhances sperm quality, DNA integrity, and chromatin status: a triple-blinded randomized clinical trial. Int J Reprod Biomed. 2021;19(3):235-44. DOI: https://doi.org/10.18502/ijrm.v19i3.8571

Dardmeh F, Alipour H, Gazerani P, van der Horst G, Brandsborg E, Nielsen HI. Lactobacillus rhamnosus PB01 (DSM 14870) supplementation affects markers of sperm kinematic parameters in a diet-induced obesity mice model. PLoS One. 2017;12(10):e0185964. DOI: https://doi.org/10.1371/journal.pone.0185964

Chen XL, Gong LZ, Xu JX. Antioxidative activity and protective effect of probiotics against high-fat diet-induced sperm damage in rats. Animal. 2013;7(2):287-92. DOI: https://doi.org/10.1017/S1751731112001528

Guarner F, Khan AG, Garisch J, Eliakim R, Gangl A, Thomson A, et al. World Gastroenterology Organisation global guidelines: probiotics and prebiotics October 2011. J Clin Gastroenterol. 2012;46(6):468-81. DOI: https://doi.org/10.1097/MCG.0b013e3182549092

Valdes AM, Walter J, Segal E, Spector TD. Role of the gut microbiota in nutrition and health. BMJ. 2018;361:k2179. DOI: https://doi.org/10.1136/bmj.k2179

Rodrigues LE, Kishibe MM, Keller R, Caetano HRDS, Rufino MN, Sanches OC, et al. Prebiotics mannan-oligosaccharides accelerate sexual maturity in rats: a randomized preclinical study. Vet World. 2021;14(5):1210-9. DOI: https://doi.org/10.14202/vetworld.2021.1210-1219

Wang C, Swerdloff RS. Limitations of semen analysis as a test of male fertility and anticipated needs from newer tests. Fertil Steril. 2014;102(6):1502-7. DOI: https://doi.org/10.1016/j.fertnstert.2014.10.021

D’Amore R, Ijaz UZ, Schirmer M, Kenny JG, Gregory R, Darby AC, et al. A comprehensive benchmarking study of protocols and sequencing platforms for 16S rRNA community profiling. BMC Genomics. 2016;17:55. DOI: https://doi.org/10.1186/s12864-015-2194-9

Lundy SD, Sangwan N, Parekh NV, Selvam M, Gupta S, McCaffrey P, et al. Functional and taxonomic dysbiosis of the gut, urine, and semen microbiomes in male infertility. Eur Urol. 2021;79(6):826-36. DOI: https://doi.org/10.1016/j.eururo.2021.01.014

Yao Y, Qiu XJ, Wang DS, Luo JK, Tang T, Li YH, et al. Semen microbiota in normal and leukocytospermic males. Asian J Androl. 2022;24(4):398. DOI: https://doi.org/10.4103/aja202172

Baud D, Pattaroni C, Vulliemoz N, Castella V, Marsland BJ, Stojanov M. Sperm microbiota and its impact on semen parameters. Front Microbiol. 2019;10:234. DOI: https://doi.org/10.3389/fmicb.2019.00234

Molina NM, Plaza-Díaz J, Vilchez-Vargas R, Sola-Leyva A, Vargas E, Mendoza-Tesarik R, et al. Assessing the testicular sperm microbiome: a low-biomass site with abundant contamination. Reprod Biomed Online. 2021;43(3):523-31. DOI: https://doi.org/10.1016/j.rbmo.2021.06.021

Jarvi K, Lacroix JM, Jain A, Dumitru I, Heritz D, Mittelman MW. Polymerase chain reaction-based detection of bacteria in semen. Fertil Steril. 1996;66(3):463-7. DOI: https://doi.org/10.1016/S0015-0282(16)58520-3

López-Hurtado M, Velazco-Fernández M, Pedraza-Sánchez M, Flores-Salazar VR, Villagrana Zesati R, Guerra-Infante FM. Molecular detection of Chlamydia trachomatis and semen quality of sexual partners of infertile women. Andrologia. 2018;50(1):e12812. DOI: https://doi.org/10.1111/and.12812

Sellami H, Znazen A, Sellami A, Mnif H, Louati N, Ben Zarrouk S, et al. Molecular detection of Chlamydia trachomatis and other sexually transmitted bacteria in semen of male partners of infertile couples in Tunisia: the effect on semen parameters and spermatozoa apoptosis markers. PLoS One. 2014;9(7):e98903. DOI: https://doi.org/10.1371/journal.pone.0098903

Cottell E, Harrison RF, McCaffrey M, Walsh T, Mallon E, Barry-Kinsella C. Are seminal fluid microorganisms of significance or merely contaminants? Fertil Steril. 2000;74(3):465-70. DOI: https://doi.org/10.1016/S0015-0282(00)00709-3

Ivanov IB, Kuzmin MD, Gritsenko VA. Microflora of the seminal fluid of healthy men and men suffering from chronic prostatitis syndrome. Int J Androl. 2009;32(5):462-7.

Rehewy M, Hafez E, Thomas A, Brown W. Aerobic and anaerobic bacterial flora in semen from fertile and infertile groups of men. Arch Androl. 1979;2(3):263-8.

Rodin DM, Larone D, Goldstein M. Relationship between semen cultures, leukospermia, and semen analysis in men undergoing fertility evaluation. Fertil Steril. 2003;79(3):1555-8.

Ivanov IB, Kuzmin MD, Gritsenko VA. Microflora of the seminal fluid of healthy men and men suffering from chronic prostatitis syndrome. Int J Androl. 2009;32(5):462-7. DOI: https://doi.org/10.1111/j.1365-2605.2008.00878.x

Rehewy M, Hafez E, Thomas A, Brown W. Aerobic and anaerobic bacterial flora in semen from fertile and infertile groups of men. Arch Androl. 1979;2(3):263-8. DOI: https://doi.org/10.3109/01485017908987323

Rodin DM, Larone D, Goldstein M. Relationship between semen cultures, leukospermia, and semen analysis in men undergoing fertility evaluation. Fertil Steril. 2003;79(3):1555-8. DOI: https://doi.org/10.1016/S0015-0282(03)00340-6

Downloads

Published

2025-07-29

How to Cite

Navas, F., Hynniewta, B. C., & Marbaniang, K. (2025). Microbiome matters: the hidden influence of gut flora on male reproductive health. International Journal of Reproduction, Contraception, Obstetrics and Gynecology, 14(8), 2829–2835. https://doi.org/10.18203/2320-1770.ijrcog20252374

Issue

Section

Review Articles