Homozygous SMN1 gene deletion as a cause of intrauterine and neonatal mortality
DOI:
https://doi.org/10.18203/2320-1770.ijrcog20253552Keywords:
Intra uterine deaths, Neonatal deaths, Spinal muscular atrophy, SMN-1 Gene, Genetic diseasesAbstract
Deoxyribonucleic acid is not only responsible for normal functioning and metabolism of body by the formation of essential proteins which are responsible for individuals growth and development but it is also responsible for transferring traits & genetic disorders from parents to their offspring, either these genetic traits make them carriers or major diseased individual, these conditions may arise because of any false nucleotide base insertion, or nucleotide deletion or any gene replacement due to radiations or mutations. SMA (survival motor atrophy) is a condition that arises because of less production or unavailability of the SMN protein, which is synthesized by the SMN-1 gene. A case of 29 years old married woman (cousin marriage- Consanguinity) has been discussed, she lost her 4 babies after birth (neonatal deaths) in between the duration of 2 to 8 months, with one intrauterine miscarriage (intra-uterine death), after CVS it was found that SMN-1 was absent in the genetic makeup of her all babies, and they were not able to survive because of muscular atrophy in pulmonary muscles causing pulmonary distress and reduced body movements with edematous condition and other body organ failures including kidney and liver. It was concluded that SMN-1 gene absence is not only responsible for causing intrauterine, neonatal deaths but also causes sudden deaths in adult age suddenly by causing paralysis. Gene replacement therapies with other oligonucleotides and splicing modifiers have been introduced with the advancement of biotechnology for the treatment of SMA disease.
Metrics
References
Park S, Jang SS, Lee S. Systematic analysis of inheritance pattern determination in genes that cause rare neurodevelopmental diseases. Front Gene. 2022;13:990015. DOI: https://doi.org/10.3389/fgene.2022.990015
Leonardi E, Savojardo C, Minervini G. Molecular Effects of Mutations in Human Genetic Diseases. International J Mol Sci. 2022;23(12):6408. DOI: https://doi.org/10.3390/ijms23126408
Sciences NIoGM. What are the facts about genetic disease. 1974.
Wynbrandt J, Ludman MD. The encyclopedia of genetic disorders and birth defects. Infobase Publishing. 2010.
Kumar D. Introduction to Genes, Genome and Inheritance. Cardiovascular Genetics and Genomics: Principles and Clinical Practice. 2018:1-34. DOI: https://doi.org/10.1007/978-3-319-66114-8_1
Kent DG, Green AR. Order matters: the order of somatic mutations influences cancer evolution. Cold Spring Harbor perspectives in medicine. 2017;7(4):27060. DOI: https://doi.org/10.1101/cshperspect.a027060
Larsen JE, Minna JD. Molecular biology of lung cancer: clinical implications. Clinics in chest Med. 2011;32(4):703. DOI: https://doi.org/10.1016/j.ccm.2011.08.003
Rabinovici GD. Late-onset Alzheimer disease. Continuum: Lifelong Learning in Neurology. 2019;25(1):14-33. DOI: https://doi.org/10.1212/CON.0000000000000700
Humphries SE, Montgomery HE, Talmud PJ. Predisposing genes, high-risk environments and coronary artery disease: LPL and fibrinogen as examples. World Rev Nutr Diet. 2001;89:61-7. DOI: https://doi.org/10.1159/000059794
Szalai C. 12. Gene environmental interaction.
Kwabi-Addo B, Kwabi-Addo B. Gene-Environment Interactions in Health Disparities. Health Outcomes in a Foreign Land: A Role for Epigenomic and Environmental Interaction. 2017:233-277. DOI: https://doi.org/10.1007/978-3-319-55865-3_10
D'Amico A, Mercuri E, Tiziano FD, et al. Spinal muscular atrophy. Orphanet J Rare Dis. 2011;6:1-10. DOI: https://doi.org/10.1186/1750-1172-6-71
Mercuri E, Sumner CJ, Muntoni F. Spinal muscular atrophy. Nature Rev Dis Prim. 2022;8(1):52. DOI: https://doi.org/10.1038/s41572-022-00380-8
Salort-Campana E, Quijano-Roy S. Clinical features of spinal muscular atrophy (SMA) type 3 (Kugelberg-Welander disease). Archives de Pédiatrie. 2020;27(7):723-8. DOI: https://doi.org/10.1016/S0929-693X(20)30273-6
Lupica A. Evaluation of disease progression and response to therapy in a cohort of late childhood/adulthood SMA patients: Is there room for new markers. 2023.
Coratti G, Cutrona C, Pera MC. Motor function in type 2 and 3 SMA patients treated with Nusinersen: a critical review and meta-analysis. Orphanet J Rare Dis. 2021;16:1-12. DOI: https://doi.org/10.1186/s13023-021-02065-z
Souza PVS, Pinto W, Ricarte A. Clinical and radiological profile of patients with spinal muscular atrophy type 4. European J Neurol. 2021;28(2):609-19. DOI: https://doi.org/10.1111/ene.14587
18. Chaytow H, Huang Y-T, Gillingwater TH. The role of survival motor neuron protein (SMN) in protein homeostasis. Cell Molec Life Sci. 2018;75:3877-94. DOI: https://doi.org/10.1007/s00018-018-2849-1
Coovert DD, Le TT, McAndrew PE. The survival motor neuron protein in spinal muscular atrophy. Human Molec Gen. 1997;6(8):1205-14. DOI: https://doi.org/10.1093/hmg/6.8.1205
20. Garcia-Cabezas M, Garcia-Alix A, Martin Y. Neonatal spinal muscular atrophy with multiple contractures, bone fractures, respiratory insufficiency and 5q13 deletion. Acta Neuropathologica. 2004;107:475-8. DOI: https://doi.org/10.1007/s00401-004-0825-3
MacKenzie A, Jacob P, Surh L, et al. Genetic heterogeneity in spinal muscular atrophy: A linkage analysis‐based assessment. Neurology. 1994;44(5):919. DOI: https://doi.org/10.1212/WNL.44.5.919
Gilliam T, Brzustowicz L, Castilla L, et al. Genetic homogeneity between acute and chronic forms of spinal muscular atrophy. Nature. 1990;345(6278):823-5. DOI: https://doi.org/10.1038/345823a0
Boda B, Mas C, Giudicelli C. Survival motor neuron SMN1 and SMN2 gene promoters: identical sequences and differential expression in neurons and non-neuronal cells. European J Human Gen. 2004;12(9):729-37. DOI: https://doi.org/10.1038/sj.ejhg.5201217
Coratti G, Ricci M, Capasso A, et al. Prevalence of spinal muscular atrophy in the era of disease-modifying therapies: an Italian Nationwide Survey. Neurology. 2023;100(11):522-8. DOI: https://doi.org/10.1212/WNL.0000000000201654
Belter L, Taylor JL, Jorgensen E. Newborn screening and birth prevalence for spinal muscular atrophy in the US. JAMA pediatrics. 2024;178(9):946-9. DOI: https://doi.org/10.1001/jamapediatrics.2024.1911
Rudnik-Schöneborn S, Heller R, Berg C. Congenital heart disease is a feature of severe infantile spinal muscular atrophy. J Med Gen. 2008;45(10):635-8. DOI: https://doi.org/10.1136/jmg.2008.057950
Macleod MJ, Taylor JE, Lunt PW. Prenatal onset spinal muscular atrophy. European J Paediat Neurol. 1999;3(2):65-72. DOI: https://doi.org/10.1016/S1090-3798(99)80004-X
Schmalbruch H, Haase G. Spinal muscular atrophy: present state. Brain Pathol. 2001;11(2):231-47. DOI: https://doi.org/10.1111/j.1750-3639.2001.tb00395.x
Lai A, Tan E, Law H, et al. SMN1 deletions among Singaporean patients with spinal muscular atrophy. Ann Acad Med Singapore. 2005;34(1):73-7. DOI: https://doi.org/10.47102/annals-acadmedsg.V34N1p73
Verhaart IE, Robertson A, Wilson IJ, et al. Prevalence, incidence and carrier frequency of 5q–linked spinal muscular atrophy–a literature review. Orphanet journal of rare diseases. 2017;12:1-15. DOI: https://doi.org/10.1186/s13023-017-0671-8
Zhang Y, He J, Zhang Y. The analysis of the association between the copy numbers of survival motor neuron gene 2 and neuronal apoptosis inhibitory protein genes and the clinical phenotypes in 40 patients with spinal muscular atrophy: Observational study. Medicine. 2020;99(3):18809. DOI: https://doi.org/10.1097/MD.0000000000018809
Bouhouche A, Benomar A, Birouk N. High incidence of SMN1 gene deletion in Moroccan adult-onset spinal muscular atrophy patients. J Neurol. 2003;250:1209-13. DOI: https://doi.org/10.1007/s00415-003-0186-1
Rall S, Grimm T. Survival in Duchenne muscular dystrophy. Acta Myologica. 2012;31(2):117.
Claborn MK, Stevens DL, Walker CK. Nusinersen: a treatment for spinal muscular atrophy. Annals of Pharmacotherapy. 2019;53(1):61-9. DOI: https://doi.org/10.1177/1060028018789956
Kakazu J, Walker NL, Babin KC. Risdiplam for the use of spinal muscular atrophy. Orthopedic Reviews. 2021;13(2):25579. DOI: https://doi.org/10.52965/001c.25579
Mahajan R. Onasemnogene abeparvovec for spinal muscular atrophy: the costlier drug ever. Medknow. 2019: 127-8. DOI: https://doi.org/10.4103/ijabmr.IJABMR_190_19
Dutt V, Gupta S, Dabur R. Skeletal muscle atrophy: Potential therapeutic agents and their mechanisms of action. Pharmacological Res. 2015;99:86-100. DOI: https://doi.org/10.1016/j.phrs.2015.05.010
Rad N, Cai H, Weiss MD. Management of spinal muscular atrophy in the adult population. Muscle & Nerve. 2022;65(5):498-507. DOI: https://doi.org/10.1002/mus.27519