Leptin and LH/FSH ratio as independent predictors of polycystic ovary syndrome in normoglycemic women: a case-control study

Authors

  • Jyoti Singh Department of Biochemistry, Lady Harding Medical College, New Delhi, India; Medical Scientist, ICMR- National Institute of Child Health and Development Research, New Delhi, India
  • Anju Jain Department of Biochemistry, Lady Harding Medical College, New Delhi, India

DOI:

https://doi.org/10.18203/2320-1770.ijrcog20253536

Keywords:

Polycystic ovary syndrome, Leptin, LH/FSH ratio, Insulin resistance, Adipokines, Inflammation, HDL

Abstract

Background: Polycystic ovary syndrome (PCOS) is a multifaceted disorder characterized by reproductive, metabolic, and endocrine disturbances. While insulin resistance (IR) is recognized as a central feature, the interplay of adipokines, lipid metabolism, gonadotropin imbalance, and inflammation in normoglycemic PCOS women remains underexplored.

Methods: A case-control study was conducted on 30 newly diagnosed normoglycemic women with PCOS (Rotterdam criteria, 2003) and 30 age-matched healthy controls. Anthropometric, hormonal (LH, FSH, LH/FSH ratio, prolactin, estrogen, progesterone, testosterone), metabolic (fasting glucose, HbA1c, insulin, HOMA-IR), lipid (cholesterol, triglycerides, HDL), adipokine (leptin), and hematological parameters were assessed. Group comparisons were performed using independent t-test/Mann-Whitney test as appropriate. Correlation analysis explored inter-relationships among variables, and multivariate logistic regression identified independent predictors of PCOS.

Results: Compared with controls, PCOS women had significantly higher BMI (26.3±5.3 versus 23.4±3.2 kg/m2; p=0.014), WHR (0.861±0.061 versus 0.799 ±0.060; p<0.001), LH (7.5±3.7 versus 5.3±2.2 mIU/ml; p=0.006), LH/FSH ratio (1.37±0.76 versus 0.76±0.32; p<0.001), estrogen (54.5±18.2 versus 38.0±11.1 pg/ml; p<0.001), testosterone (49.7±25.1 versus 34.5±14.0 ng/dl; p=0.001), fasting insulin (11.55±10.8 versus 5.63±2.6 uIU/ml; p=0.004), HOMA-IR (2.47±2.4 versus 1.17±0.54; p=0.007), and leptin (31.3±17.4 versus 16.4±10.5 ng/ml; p<0.001), with significantly lower FSH (5.6±1.7 versus 7.2±1.9 mIU/ml; p<0.001) and HDL (43.0±10.0 versus 54.3±15.3 mg/dl; p<0.001). Correlation analysis revealed positive associations between BMI and leptin, insulin, and HOMA-IR; WHR and testosterone; TLC and leptin/WHR; and LH/FSH ratio and estrogen, while HDL correlated negatively with HOMA-IR and TLC. Logistic regression identified leptin (OR=1.105, 95% CI 1.016-1.201, p=0.020) and LH/FSH ratio (OR=18.48, 95% CI 1.82-187.7, p=0.014) as independent predictors of PCOS.

Conclusions: Normoglycemic PCOS women show distinct hormonal, metabolic, and adipokine alterations, with leptin and LH/FSH emerging as robust independent predictors. These findings highlight the early convergence of adiposity, insulin resistance, inflammation, and gonadotropin imbalance in PCOS, underscoring the need for early biomarker-based risk stratification and intervention even before the onset of overt glycemic abnormalities.

Metrics

Metrics Loading ...

References

Azziz R, Carmina E, Chen Z, Dunaif A, Laven JSE, Legro RS, et al. Polycystic ovary syndrome. Nat Rev Dis Prim. 2016;2:16057. DOI: https://doi.org/10.1038/nrdp.2016.57

Sanchez-Garrido MA, Tena-Sempere M. Metabolic dysfunction in polycystic ovary syndrome: Pathogenic role of androgen excess and potential therapeutic strategies. Mol Metab. 2020;35:100937. DOI: https://doi.org/10.1016/j.molmet.2020.01.001

Dunaif A. Insulin resistance and the polycystic ovary syndrome: mechanism and implications for pathogenesis. Endocr Rev. 1997;18(6):774-800. DOI: https://doi.org/10.1210/er.18.6.774

Moran LJ, Misso ML, Wild RA, Norman RJ. Impaired glucose tolerance, type 2 diabetes and metabolic syndrome in polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod Update. 2010;16(4):347-63. DOI: https://doi.org/10.1093/humupd/dmq001

Chen W, Pang Y. Metabolic syndrome and PCOS: pathogenesis and the role of metabolites. Metabolites. 2021;11(12):869. DOI: https://doi.org/10.3390/metabo11120869

Nikanfar S, Oulapour H, Rastgar Rezaei Y, Zarezadeh R, Jafari-gharabaghlou D, Nejabati HR, et al. Role of adipokines in the ovarian function: Oogenesis and steroidogenesis. J Steroid Biochem Mol Biol. 2021;209:105852. DOI: https://doi.org/10.1016/j.jsbmb.2021.105852

Schüler-Toprak S, Oehmke O, Buechler C, Treeck O. The complex roles of adipokines in polycystic ovary syndrome and endometriosis. Biomedicines. 2022;10:2503. DOI: https://doi.org/10.3390/biomedicines10102503

Wild RA. Dyslipidemia in PCOS. Steroids. 2012;77(4):295-9. DOI: https://doi.org/10.1016/j.steroids.2011.12.002

Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev. 2011;32(1):81-151. DOI: https://doi.org/10.1210/er.2010-0013

Magoffin DA. Ovarian steroidogenic abnormalities in the polycystic ovary syndrome. In: Totowa N, ed. Humana Press. Totowa, NJ: Humana Press; 2006.

Longo M, La Marca A. The role of LH in follicle development: from physiology to new clinical implications. Reprod Biol Endocrinol. 2025;23(1):22. DOI: https://doi.org/10.1186/s12958-025-01353-8

Hajam YA, Rasool H, Kumar R, Basheer M, Reshi MS. A review on critical appraisal and pathogenesis of polycystic ovarian syndrome. Endocr Metab Sci. 2024;14:100162. DOI: https://doi.org/10.1016/j.endmts.2024.100162

Dong J, Rong D. Polycystic ovary syndrome: pathophysiology and therapeutic opportunities. BMJ Med. 2023;2(1):e000548. DOI: https://doi.org/10.1136/bmjmed-2023-000548

Ding H, Zhang J, Zhang F, Zhang S, Chen X, Liang W, et al. Resistance to insulin and elevated level of androgen: a major cause of polycystic ovary syndrome. Front Endocrinol. 2021;12:741764. DOI: https://doi.org/10.3389/fendo.2021.741764

Unluhizarci K, Kelestimur F. Role of insulin and insulin resistance in androgen excess disorders. World J Diabetes. 2021;12(5):616-29. DOI: https://doi.org/10.4239/wjd.v12.i5.616

Peng Y, Yang H, Song J, Feng D, Na Z, Jiang H, et al. Elevated serum leptin levels as a predictive marker for polycystic ovary syndrome. Front Endocrinol. 2022;13:845165. DOI: https://doi.org/10.3389/fendo.2022.845165

Choudhary J. Serum leptin level in women with polycystic ovary syndrome: correlation with adiposity, insulin, and circulating testosterone. Ann Med Health Sci Res. 2013;3(2):191-6. DOI: https://doi.org/10.4103/2141-9248.113660

Sneha S, Hegde S. The role of inflammatory pathways in PCOS-related infertility and pregnancy complications. Eur J Cardiovasc Med. 2024;14:679-84.

Pérez-Pérez A, Sánchez-Jiménez FM, Vilariño-García T, Sánchez-Margalet V. Role of leptin in inflammation and vice versa. Int J Mol Sci. 2020;21(16):5887. DOI: https://doi.org/10.3390/ijms21165887

Asmathulla S, Rajarajeswari V, Kripa S, Rajarajeswari R. Insulin resistance and its relation to inflammatory status and serum lipids among young women with PCOS. Int J Reprod Contracept Obstet Gynecol. 2013;2(3):325-30. DOI: https://doi.org/10.5455/2320-1770.ijrcog20130913

Chou SH, Mantzoros C. Role of leptin in human reproductive disorders. J Endocrinol. 2014;223(1):T49-62. DOI: https://doi.org/10.1530/JOE-14-0245

Farooqi IS, O’Rahilly S. 20 years of leptin: human disorders of leptin action. J Endocrinol. 2014;223(1):T63-70. DOI: https://doi.org/10.1530/JOE-14-0480

Merza WM, Yassin A, Mahmood MA. FSH, LH, lipid and adipokines in polycystic ovary syndrome: clinical biochemistry insights for diagnosis and management. J Steroid Biochem Mol Biol. 2025;106773. DOI: https://doi.org/10.1016/j.jsbmb.2025.106773

Kumari M, Kumari S, Das J. Adipokine dysregulation in obese and non-obese polycystic ovary syndrome (PCOS) patients: association with visceral adiposity index and metabolic risk. Cureus. 2025;17(7). DOI: https://doi.org/10.7759/cureus.87755

Barber TM, Hazell P, Weickert MO, Franks S. Obesity and polycystic ovary syndrome: implications for pathogenesis and novel management strategies. Clin Med Insights Reprod Health. 2019;13:1179558119874042. DOI: https://doi.org/10.1177/1179558119874042

Rashmi S, Hegde N, Reddy V, Veena BM. Evaluation of body composition in body mass index matched PCOS and eumenorrheic non-PCOS college women. Int J Community Med Public Health. 2025;12(4):1682. DOI: https://doi.org/10.18203/2394-6040.ijcmph20250924

Liao B, Qiao J, Pang Y. Central regulation of PCOS: abnormal neuronal-reproductive-metabolic circuits in PCOS pathophysiology. Front Endocrinol. 2021;12:667422. DOI: https://doi.org/10.3389/fendo.2021.667422

Zhang H, Wang W, Zhao J, Jiao P, Zeng L, Zhang H, et al. Relationship between body composition, insulin resistance, and hormonal profiles in women with polycystic ovary syndrome. Front Endocrinol. 2023;13:1085656. DOI: https://doi.org/10.3389/fendo.2022.1085656

Diamanti-Kandarakis E, Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev. 2012;33(6):981-1030. DOI: https://doi.org/10.1210/er.2011-1034

Singhal AK, Singh G, Singh SK, Karunanand B, Gunjan G, Agrawal SK. Exploring the link between leptin levels and metabolic syndrome in elderly Indian patients: implications for family medicine and primary care practices. J Fam Med Prim Care. 2024;13(9):3633-8. DOI: https://doi.org/10.4103/jfmpc.jfmpc_2008_23

Kalra S, John B, Yeravdekar R. Emotional and psychological needs of people with diabetes. Indian J Endocrinol Metab. 2018;22(5):696-704. DOI: https://doi.org/10.4103/ijem.IJEM_579_17

Bhullar M. Adipokines-removing road blocks to obesity and diabetes therapy. Mol Metab. 2014;3(3):230-40. DOI: https://doi.org/10.1016/j.molmet.2014.01.005

Downloads

Published

2025-10-29

How to Cite

Singh, J., & Jain, A. (2025). Leptin and LH/FSH ratio as independent predictors of polycystic ovary syndrome in normoglycemic women: a case-control study. International Journal of Reproduction, Contraception, Obstetrics and Gynecology, 14(11), 3895–3902. https://doi.org/10.18203/2320-1770.ijrcog20253536

Issue

Section

Original Research Articles