Recurrent ovarian cancer with BRCA reversion: a case study and comprehensive literature review
DOI:
https://doi.org/10.18203/2320-1770.ijrcog20253919Keywords:
BRCA reversion, Carcinoma ovary, Platinum resistance, Liquid biopsy, Parp inhibitors resistanceAbstract
Herein, this report presents the case of a 48-year-old female with a history of breast cancer (2013) and subsequent high-grade epithelial ovarian cancer (2020), illustrating the complex evolution of therapeutic resistance in BRCA1-mutated malignancies. Following initial response to paclitaxel-carboplatin chemotherapy and complete surgical debulking, the patient experienced multiple disease relapses transitioning from platinum-sensitive to platinum-resistant states. Comprehensive molecular profiling via Tempus xF+ next-generation sequencing revealed a pathogenic BRCA1 mutation alongside a secondary BRCA1 reversion mutation, conferring partial restoration of homologous recombination repair and resistance to both platinum-based chemotherapy and PARP inhibitors. Subsequent therapies, including pemetrexed and liposomal irinotecan, were employed with limited success. This case underscores the dynamic molecular evolution of recurrent ovarian cancer under therapeutic pressure and highlights the critical role of serial genomic profiling in guiding personalized treatment strategies. Emerging approaches targeting alternative DNA repair mechanisms and novel antibody–drug conjugates may hold promise for overcoming resistance in BRCA-mutated, therapy-refractory ovarian cancer.
Metrics
References
Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, et al. Ovarian cancer statistics, 2018. CA Cancer J Clin. 2018;68(4):284-96. DOI: https://doi.org/10.3322/caac.21456
Lord CJ, Ashworth A. BRCAness revisited. Nat Rev Cancer. 2016;16(2):110-20. DOI: https://doi.org/10.1038/nrc.2015.21
Ledermann J, Harter P, Gourley C, Friedlander M, Vergote I, Rustin G, et al. Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. N Engl J Med. 2012;366(15):1382-92. DOI: https://doi.org/10.1056/NEJMoa1105535
Norquist BM, Brady MF, Harrell MI, Walsh T, Lee MK, Gulsuner S, et al. Mutations in homologous recombination genes and outcomes in ovarian carcinoma patients in GOG 218: An NRG Oncology/Gynecologic Oncology Group study. Clin Cancer Res. 2018;24(4):777-83. DOI: https://doi.org/10.1158/1078-0432.CCR-17-1327
Kondrashova O, Nguyen M, Shield-Artin K, Tinker AV, Teng NNH, Harrell MI, et al. Secondary somatic mutations restoring RAD51C and RAD51D associated with acquired resistance to PARP inhibitors in ovarian cancer. Nat Commun. 2017;8(1):15210.
Christie EL, Fereday S, Doig K, Pattnaik S, Dawson SJ, Bowtell DDL. Reversion of BRCA1/2 germline mutations detected in circulating tumor DNA from patients with high-grade serous ovarian cancer. J Clin Oncol. 2017;35(12):1274-80. DOI: https://doi.org/10.1200/JCO.2016.70.4627
Li H, Liu ZY, Wu N, Chen YC, Cheng Q, Wang J. PARP inhibitor resistance: The underlying mechanisms and clinical implications. Mol Cancer. 2020;19(1):107. DOI: https://doi.org/10.1186/s12943-020-01227-0
Lin KK, Harrell MI, Oza AM, Oaknin A, Ray-Coquard I, Tinker AV, et al. BRCA reversion mutations in circulating tumor DNA predict primary and acquired resistance to the PARP inhibitor rucaparib in high-grade ovarian carcinoma. Cancer Discov. 2019;9(2):210-9. DOI: https://doi.org/10.1158/2159-8290.CD-18-0715
Priestley P, Baber J, Lolkema MP, Steeghs N, de Bruijn E, Shale C, et al. Pan-cancer whole-genome analyses of metastatic solid tumours. Nature. 2019;575(7781):210-6. DOI: https://doi.org/10.1038/s41586-019-1689-y
Merino D, Best SA, Singh S, Ackland SP, Thorne H, Fox SB, et al. Targeting DNA repair in cancer: Beyond PARP inhibitors. Cancer Discov. 2022;12(11):2547-65.
Keung MYT, Wu Y, Vadgama JV. PARP inhibitors as a therapeutic agent for homologous recombination deficiency in breast cancers. J Clin Med. 2019;8(4):435. DOI: https://doi.org/10.3390/jcm8040435
Rose M, Burgess JT, O’Byrne K, Richard DJ, Bolderson E. PARP inhibitors: clinical relevance, mechanisms of action and tumor resistance. Front Cell Dev Biol. 2020;8:564601. DOI: https://doi.org/10.3389/fcell.2020.564601
Zong H, Zhang J, Xu Z, Dong L, Li Q, Wang Y, et al. Comprehensive analysis of somatic reversion mutations in homologous recombination repair genes in a large cohort of Chinese pan-cancer patients. J Cancer. 2022;13(4):1119-29. DOI: https://doi.org/10.7150/jca.65650
Ceccaldi R, Liu JC, Amunugama R, Hajdu I, Primack B, Petalcorin MIR, et al. Homologous-recombination-deficient tumours are dependent on Polθ-mediated repair. Nature. 2015;518(7538):258-62. DOI: https://doi.org/10.1038/nature14184
Do K, Doroshow JH, Kummar S. Wee1 kinase as a target for cancer therapy. Cell Cycle. 2013;12(19):3159-64. DOI: https://doi.org/10.4161/cc.26062
Chardin L, Leary A. Immunotherapy in ovarian cancer: thinking beyond PD-1/PD-L1. Front Oncol. 2021;11:795547. DOI: https://doi.org/10.3389/fonc.2021.795547
Moore KN, Oza AM, Colombo N, Oaknin A, Scambia G, Lorusso D, et al. Phase III, randomized trial of mirvetuximab soravtansine versus chemotherapy in patients with platinum-resistant ovarian cancer: primary analysis of FORWARD I. Ann Oncol. 2021;32(6):757-65. DOI: https://doi.org/10.1016/j.annonc.2021.02.017
Sharma P, Allison JP. The future of immune checkpoint therapy. Science. 2015;348(6230):56-61. DOI: https://doi.org/10.1126/science.aaa8172