Frontiers in fertility: a review of breakthroughs in assisted reproductive technology

Authors

  • Asha S. Vijay GarbhaGudi Institute of Reproductive Health and Research (GGIRHR) Pvt Ltd, Bengaluru, Karnataka, India
  • Fyzullah Syed Department of Embryology, GarbhaGudi IVF Centre, Bengaluru, Karnataka, India
  • Suresh Kumar Karri Department of Research and Publications, GarbhaGudi Institute of Reproductive Health and Research (GGIRHR) Pvt Ltd, Bengaluru, Karnataka, India

DOI:

https://doi.org/10.18203/2320-1770.ijrcog20253928

Keywords:

Assisted reproductive technology, Non-invasive preimplantation genetic testing, Mitochondrial replacement therapy, Invitro fertilization, Endometrial microbiome, Recurrent implantation failure

Abstract

Assisted reproductive technology (ART) is undergoing a transformation driven by emerging biomedical innovations. This review examines recent advances including modulation of the endometrial microbiome, non-invasive preimplantation genetic testing (niPGT) (usually referred as NIPT - non-invasive prenatal genetic testing), mitochondrial replacement therapy (MRT), and reproductive tissue engineering and evaluates their clinical efficacy, ethical implications, and impact on reproductive outcomes. For instance, niPGT has demonstrated up to 80% concordance with invasive testing and reducing biopsy-associated risks. Endometrial microbiota profiling is increasingly used to personalize embryo transfer timing, improving implantation up to 30% of previously unsuccessful in vitro fertilization (IVF) cycles. Innovations in ovarian tissue cryopreservation and 3D bioprinting of reproductive tissues offer fertility solutions for patients with cancer or congenital anomalies. However, these advancements in technology raise ethical concerns around embryo manipulation, germline modification, and equitable access. By synthesizing recent findings, this paper outlines the future trajectory of ART, emphasizing the need for evidence-based integration and regulatory oversight.

Metrics

Metrics Loading ...

References

Aderaldo JF, Rodrigues BH, Câmara MT, de Medeiros GT, Lanza DC et al. Main topics in assisted reproductive market: A scoping review. PLoS ONE. 2023;18(8):e0284099. DOI: https://doi.org/10.1371/journal.pone.0284099

Takeuchi T, Doshida M, Karino A, Ishibashi Y, Saito S, Takaya Yukiko, et al. An intervention according to the results of a new endometrial microbiome testing improves ART outcomes in recurrent implantation failure patients. Fertility Sterility. 2024;2:270-82. DOI: https://doi.org/10.1016/j.fertnstert.2024.07.711

Chen RZ, Wang YF, Chen PG, Fang C, Li TT, Zhu YQ, et al. Clinical application of the endometrial microbiota test combined with personalized treatment in patients with repeated implantation failure. Reproduct Develop Med. 2024;8:18-23. DOI: https://doi.org/10.1097/RD9.0000000000000085

Moreno I, Simon C. Relevance of assessing uterine microbiota in infertility. Fertil Steril 2018;110(3):337-43. DOI: https://doi.org/10.1016/j.fertnstert.2018.04.041

Pelzer ES, Allan JA, Cunningham K, Mengersen K, Allan JM, Launchbury T, et al. Microbial colonization of follicular fluid: alterations in cytokine expression and adverse assisted reproduction technology outcomes. Hum Reprod. 2011;26(7):1799-812. DOI: https://doi.org/10.1093/humrep/der108

Franasiak JM, Werner MD, Juneau CR, Tao X, Landis J, Zhan Y, et al. Endometrial microbiome at the time of embryo transfer: next-generation sequencing of the 16S ribosomal subunit. J Assisted Reprod Genet. 2016;33(1):129-36. DOI: https://doi.org/10.1007/s10815-015-0614-z

Kyono K, Hashimoto T, Nagai Y, Sakuraba Y. Analysis of endometrial microbiota by 16S ribosomal RNA gene sequencing among infertile patients: correlation with embryo implantation. Reproduct Med Biol. 2019;18(4):364-70.

Korczynska L, Zeber-Lubecka N, Zgliczynska M, Zarychta E, Zareba K, Wojtyla C, et al. The role of microbiota in the pathophysiology of uterine fibroids – a systematic review. Front Cell Infect Microbiol. 2013;13:1177366. DOI: https://doi.org/10.3389/fcimb.2023.1177366

Chen C, Song X, Wei W, Zhong H, Dai J, Lan Z, et al. The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases. Nature Communications. 2017;8(1):875. DOI: https://doi.org/10.1038/s41467-017-00901-0

Klitzman R, Toynbee M, Sauer MV. Controversies concerning mitochondrial replacement therapy. Fertil Steril. 2015;103(2):344-56.

Li X, Hao Y, Chen D, Ji D, Zhu W, Zhu X, et al. Non-invasive preimplantation genetic testing for putative mosaic blastocysts: a pilot study. Hum Reprod. 2021;36(7):2020-34. DOI: https://doi.org/10.1093/humrep/deab080

Xie P, Zhang S, Gu Y. Non-invasive preimplantation genetic testing for conventional IVF blastocysts. J Transl Med. 2022;20:396-415. DOI: https://doi.org/10.1186/s12967-022-03596-0

Li T, Chan C, Greenblatt E. A non-selection study to evaluate non-invasive preimplantation genetic testing for aneuploidy. Human Reproduction 2023;38(1):93-105. DOI: https://doi.org/10.1093/humrep/dead093.1052

Tsai NC, Chang YC, Su YR, Lin YC, Weng PL, Cheng YH, et al. Validation of Non-Invasive Preimplantation Genetic Screening Using a Routine IVF Laboratory Workflow. Biomedicines. 2022;10(6):1386. DOI: https://doi.org/10.3390/biomedicines10061386

Zaninovic N, Rosenwaks Z, Badiola A-C, Flores-Saiffe-Farías A, Mendizabal-Ruiz G, Nogueira D, et al. Artificial intelligence in embryo selection: a critical review. Fertil Steril. 2021;116(4):777-84.

Xu J, Fang R, Chen L, Chen D, Xiao JP, Yang W, et al. Non-invasive chromosome screening of human embryos by genome sequencing of embryo culture medium for in vitro fertilization. Proceedings of the National Acad Sci. 2016;113(42):11907–12. DOI: https://doi.org/10.1073/pnas.1613294113

Lyu Q, Zou W, Huang T. Recent advances in mitochondrial replacement therapy and its future expectations. Clin Transl Disc. 2025;2:18-26. DOI: https://doi.org/10.1002/ctd2.70010

Klitzman R, Toynbee M, Sauer MV. Controversies concerning mitochondrial replacement therapy. Fertil Steril. 2015;103(2):344-56. DOI: https://doi.org/10.1016/j.fertnstert.2014.10.028

Zhang JJ, Liu H, Luo S, Lu Z, Chávez-Badiola A, Liu Z, et al. Live birth derived from oocyte spindle transfer to prevent mitochondrial disease. Reprod Biomed Online. 2017;34(4):361-8. DOI: https://doi.org/10.1016/j.rbmo.2017.01.013

Baylis F. The ethics of creating children with three genetic parents. Reprod Biomed Online. 2013;26(6):531-4. DOI: https://doi.org/10.1016/j.rbmo.2013.03.006

Alikani M, Fauser BCJ, García-Valesco JA, Simpson JL, Johnson MH. First birth following spindle transfer for mitochondrial replacement therapy: hope and trepidation. Reprod Biomed Online. 2017;34(4):333-6. DOI: https://doi.org/10.1016/j.rbmo.2017.02.004

Khattak H, Malhas R, Craciunas L, Afifi Y, Amorim CA, Fishel S, et al. Fresh and cryopreserved ovarian tissue transplantation for preserving reproductive and endocrine function: a systematic review and individual patient data meta-analysis. Human Reprod Update. 2022;28(3):400-16. DOI: https://doi.org/10.1093/humupd/dmac003

Gadek F, Lauren M. Thawing fertility: a view of ovarian tissue cryopreservation processes and review of ovarian transplant research. Fertility and Sterility. 2024;4:574-85. DOI: https://doi.org/10.1016/j.fertnstert.2024.07.005

Donnez J, Dolmans MM. Fertility preservation in women. N Engl J Med. 2017;377(17):1657-65. DOI: https://doi.org/10.1056/NEJMra1614676

Donnez J, Dolmans MM, Demylle D, Jadoul P, Pirard C, Squifflet J, et al. Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet. 2004;364(9443):1405-10. DOI: https://doi.org/10.1016/S0140-6736(04)17222-X

Nair R, Kasturi M, Mathur V, Seetharam RN, S Vasanthan K. Strategies for developing 3D printed ovarian model for restoring fertility. Clin Transl Sci. 2024;17(7):63-75. DOI: https://doi.org/10.1111/cts.13863

Ji S, Guvendiren M. Recent Advances in Bioink Design for 3D Bioprinting of Tissues and Organs. Front Bioeng Biotechnol. 2017;5:23-30. DOI: https://doi.org/10.3389/fbioe.2017.00023

Laronda MM, Jakus AE, Whelan KA, Wertheim JA, Shah RN, Woodruff TK, et al. Initiation of puberty in a transgender girl using a 3D bioprinted ovary. Nat Commun. 2017;8:15261.

Laronda MM, Rutz AL, Xiao S. Whelan KA, Duncan FE, Roth EW, et al. A bioprosthetic ovary created using 3D printed microporous scaffolds restores ovarian function in sterilized mice. Nature Communications. 2017;8:15261. DOI: https://doi.org/10.1038/ncomms15261

Abaci A, Guvendiren M. Designing decellularized extracellular matrix-based bioinks for 3D bioprinting. Adv Healthc Mater. 2020;9(24):e2000734. DOI: https://doi.org/10.1002/adhm.202000734

Kim HK, Kim TJ. Current Status and Future Prospects of Stem Cell Therapy for Infertile Patients with Premature Ovarian Insufficiency. Biomolecules. 2024;14(2):242-9. DOI: https://doi.org/10.3390/biom14020242

Guo C, Ma Y, Situ Y, Liu L, Luo G, Li H, et al. Mesenchymal stem cell therapy for premature ovarian insufficiency: a systematic review and meta-analysis. Stem Cell Res Ther. 2021;12:6.

Ali I, Padhiar AA, Wang T, He L, Chen M, Wu S, Zhou Y, Zhou G. Stem Cell-Based Therapeutic Strategies for Premature Ovarian Insufficiency and Infertility: A Focus on Aging. Cells. 2022;11(23):3713. DOI: https://doi.org/10.3390/cells11233713

Singh N, Shekhar B, Mohanty S, Kumar S, Seth T, Girish B. Autologous Bone Marrow-Derived Stem Cell Therapy for Asherman's Syndrome and Endometrial Atrophy: A 5-Year Follow-up Study. J Hum Reprod Sci. 2020;13(1):31-7. DOI: https://doi.org/10.4103/jhrs.JHRS_64_19

Volarevic V, Lojk J, Arsenijevic N, Lukic ML, Stojkovic M. Ethical and safety issues of stem cell-based therapy. Stem Cell Rev Rep. 2018;14(4):388-400. DOI: https://doi.org/10.7150/ijms.21666

Downloads

Published

2025-11-27

How to Cite

Vijay, A. S., Syed, F., & Karri, S. K. (2025). Frontiers in fertility: a review of breakthroughs in assisted reproductive technology. International Journal of Reproduction, Contraception, Obstetrics and Gynecology, 14(12), 4444–4448. https://doi.org/10.18203/2320-1770.ijrcog20253928

Issue

Section

Review Articles