Artificial intelligence in embryo selection: enhancing precision and overcoming traditional limitations in in vitro fertilization
DOI:
https://doi.org/10.18203/2320-1770.ijrcog20260214Keywords:
Assisted reproductive technology, In vitro fertilization, Artificial intelligence, Deep learning, Convolutional neural networks, Embryo grading, Predictive analyticsAbstract
Identification of embryos with the highest potential for successful implantation is a key step in in-vitro fertilization (IVF). Traditionally, embryologists visually grade embryos by assessing their morphology and developmental stages. However, these assessments can differ between embryologists (inter-observer variability) and even when the same embryologist reviews the same embryo again (intra-observer variability), leading to inconsistent grading and potential misjudgement of embryo grading. Recent advancements in artificial intelligence (AI) offer a more standardized and objective approach to human embryo grading. By using machine learning models, AI systems can analyze embryo images and detect subtle developmental patterns that may not be apparent through visual assessment alone. This review explores original research studies from 2012 to 2024, that developed AI-driven embryo assessment methods that apply machine learning models, such as Convolutional Neural Networks (CNNs), which are deep learning models, while excluding studies involving animal embryos and non-english papers. Our findings from the review indicate that AI can reduce human error and improve embryo grading consistency for successful IVF. However, integrating AI into clinical practice presents challenges such as data variability, regulatory barriers, and the need for transparent, explainable AI models. Future directions include refining AI models to handle diverse datasets ensuring model interpretability for clinicians, and validating AI systems through large-scale clinical trials to establish their reliability and clinical utility in embryo selection.
Metrics
References
Ahlström A, Berntsen J, Lundin K, Johansen M, Bergh C, Cimadomo D, et al. Correlations between a deep learning-based algorithm for embryo evaluation with cleavage-stage cell numbers and fragmentation. Reprod BioMed Online. 2023;47(6):103408. DOI: https://doi.org/10.1016/j.rbmo.2023.103408
Biggers JD. IVF and embryo transfer: Historical origin and development. Reprod BioMed Online. 2012;25(2):118–27. DOI: https://doi.org/10.1016/j.rbmo.2012.04.011
Bormann CL, Kanakasabapathy MK, Thirumalaraju P, Gupta R, Pooniwala R, Kandula H, et al. Consistency and objectivity of automated embryo assessments using deep neural networks. Fertility and Sterility. 2020;113(4):781–77. DOI: https://doi.org/10.1016/j.fertnstert.2019.12.004
Charbuty B, Abdulazeez A. Classification based on decision tree algorithm for machine learning. JASTT. 2021;2(1):20–8. DOI: https://doi.org/10.38094/jastt20165
Chen K, Zuo J, Han W, Guo JH. Intelligent assisted reproduction: Innovative applications of artificial intelligence in embryo health assessment. Lab Med Discovery. 2025;2(2):100075. DOI: https://doi.org/10.1016/j.lmd.2025.100075
Chen TJ, Huang YL, Lin CH, Chung MT, Chen Y. Using deep learning with large datasets of microscope images to develop an automated embryo grading system. Fertil Reprod. 2019;1(1):51-6. DOI: https://doi.org/10.1142/S2661318219500051
Choucair, F, Younis N, Hourani A. The value of the modern embryologist to a successful IVF system. Middle East Fertility Society J. 2021;26:15. DOI: https://doi.org/10.1186/s43043-021-00061-8
Chow DJX, Wijesinghe P, Dholakia K, Dunning KR. Does artificial intelligence have a role in the IVF clinic?. Reprod Fertil. 2021;2(3):C29–34. DOI: https://doi.org/10.1530/RAF-21-0043
Farias AFS, Chavez BA, Mendizabal R, Valencia MR, Drakeley A, Cohen J, et al. Automated identification of blastocyst regions at different development stages. Sci Rep. 2023;13(1): 26386-6. DOI: https://doi.org/10.1038/s41598-022-26386-6
Fernandez EI, Ferreira AS, Cecílio MHM, Chéles DS, de Souza RCM , Nogueira MFG , et al. Artificial intelligence in the IVF laboratory. J Assist Reprod Genet. 2020;37(10):2359–76. DOI: https://doi.org/10.1007/s10815-020-01881-9
Geampana A, Perrotta M. Predicting success in the embryology lab. Sci Technol Human Values. 2023; 48(1):212–33. DOI: https://doi.org/10.1177/01622439211057105
Coticchio G, Ahlström A, Arroyo G, Balaban B, Campbell A, De Los Santos, et al. The Istanbul Consensus update: Revised ESHRE/ALPHA consensus on embryo assessment. Hum Reprod. 2025;40(6):989-1035. DOI: https://doi.org/10.1093/humrep/deaf021
Khosravi P, Kazemi E, Zhan Q, Toschi M, Malmsten JE, Hickman C, et al. Deep learning enables robust assessment and selection of human blastocysts. npj Digital Medicine. 2019;21(2). DOI: https://doi.org/10.1038/s41746-019-0096-y
Klimczak AM, Herlihy NS, Kim JG, Hanson BM, Margolis CK, Roberts LM, et al. Embryologists are more likely to choose euploid embryos. Fertility and Sterility. 2021;116(3):174–5. DOI: https://doi.org/10.1016/j.fertnstert.2021.07.480
Kragh MF, Karstoft H. Embryo selection with artificial intelligence. J Assist Reprod Genet. 2021; 38(7):1675–89. DOI: https://doi.org/10.1007/s10815-021-02254-6
Kromp F, Wagner R, Balaban B, Cottin V, Cuevas-Saiz I, Schachner C, et al. Annotated human blastocyst dataset. Scientific Data. 2023;10(1):271. DOI: https://doi.org/10.1038/s41597-023-02182-3
Mahesh B. Machine learning algorithms: A review. Int J Sci Res. 2020;9(1):381–6. DOI: https://doi.org/10.21275/ART20203995
Martínez GL, Serrano M, González-Utor A, Ortíz N, adajoz V, Olaya E, et al. Inter-laboratory agreement on embryo classification. PLoS ONE. 2017;12(8): e0183328. DOI: https://doi.org/10.1371/journal.pone.0183328
Mendizabal-Ruiz G, Chavez-Badiola A, Aguilar Figueroa I, Martinez Nuño V, Flores-Saiffe Farias A, Valencia-Murillo R, et al. SiD-assisted sperm selection. Reproductive BioMedicine Online. 2022; 45(4):703–11. DOI: https://doi.org/10.1016/j.rbmo.2022.03.036
VerMilyea M, Hall JM, Diakiw SM, Johnston A, Nguyen T, Perugini D, et al. AI-based prediction of embryo viability. Hum Reprodu. 2020;35(4):770–84.
Niakan KK, Han J, Pedersen RA, Simon C, Pera RA. Human pre-implantation embryo development. Development. 2012;139(5):829-41. DOI: https://doi.org/10.1242/dev.060426
Onthuam K, Charnpinyo N, Suthicharoenpanich K, Engphaiboon S, Siricharoen P, Chaichaowarat R, et al. Combined input deep learning pipeline for embryo selection. J Imaging. 2025;11(1):13. DOI: https://doi.org/10.3390/jimaging11010013
Presacan O, Dorobanţiu A, Thambawita v, Riegler MA, Stensen MH, Iliceto M, et al. Merging synthetic and real embryo data. Scientific Reports. 2025;15:9805. DOI: https://doi.org/10.1038/s41598-025-94680-0
Raudonis V, Paulauskas N, Vaitkus, A. and Maskeliūnas, R. Automation of early-stage human embryo development detection. BioMedical Engineering Online. 2019;18, 94. DOI: https://doi.org/10.1186/s12938-019-0738-y
Sinaga KP, Yang MS. Unsupervised K-means clustering algorithm. IEEE Access. 2020;8:80716-7. DOI: https://doi.org/10.1109/ACCESS.2020.2988796
Tang Y. Deep learning using linear support vector machines. Proceedings of ICML. Availaible at: https://arxiv.org/abs/1306.0239. Accessed on 12 April 2025.
Zaninovic N, Rosenwaks Z. Artificial intelligence in IVF and embryology. Fertility and Sterility. 2020; 114(5):914–20. DOI: https://doi.org/10.1016/j.fertnstert.2020.09.157
Ou Z, Li Y, Xu L, Zhang H, Wang J, Liu Q. et al. (2023) Multi-model framework for embryo quality assessment. Computers in Biology and Medicine, 158, 106873.
Charnpinyo N., Rungroj, N. and Kijsirikul, B. (2023) Deep learning approach for blastocyst quality classification. Artificial Intelligence in Medicine, 146, 102693. DOI: https://doi.org/10.1016/j.artmed.2023.102693
Ahlström A, Berntsen J, Petersen K, Lundin K, Agerholm, I, Zaninovic N, et al. Clinical validation of iDA Score v2.0. Human Reproduction. 2023; 38(4):678-88.
Theilgaard LJ, Berntsen, J., Petersen, K., Lundin, K., Agerholm, I. and Zaninovic, N. et al. (2023) Robust embryo ranking using iDAScore. npj Digital Medicine, 6, 118.
Arsalan M, Naqvi, R.A., Kim, D.S., Nguyen, T.T., Mehmood, A. and Lee, H.J. et al. (2022) MASS-Net for blastocyst segmentation. Biomedical Signal Processing and Control, 73, 103415.
Loewke KE, Smith D, Hill MJ, Check JH, Suh RS, Lathi RB. Predicting embryo implantation using deep learning. Fertility and Sterility. 2022;118(3):566–75.
Wang S, Yu L, Li K, Yang X, Fu C, Heng PA. Explainable deep learning for blastocyst selection. IEEE J Biomed Health Inform. 2021;25(10):3804-15. DOI: https://doi.org/10.1109/JBHI.2021.3099755
Septiandri AA, Hidayat R, Nugroho HA, Automatic blastocyst grading using ResNet-50. Procedia Computer Science, 179, 300–307.
Rad RM, Saeedi P, Au J, Havelock J. HiNN for blastocyst segmentation. Comput Biol Med. 2018; 98:111-20.
Saeedi P, Au J, Havelock J. Identification of ICM and TE. Medical Image Analysis. 2017;38:1-11.
Yee D, Abbott, A., Smith, A. and Tan, S.L. (2013) Automated grading of blastocyst images. Proceedings of SPIE Medical Imaging, 8670, 86700Q. DOI: https://doi.org/10.1117/12.2008133
Santos Filho, E Noble, Wells D. Blastocyst classification using SVM. Med Eng Phys. 2012;34(9):1281-8.
Liao Y. Blastocyst detection using Faster R-CNN. Pattern Recognition Letters. 2024;176:90–8.
Alkindy S, Al-Zubaidi L, Alsudani A, Al-Hakeem S. Cleavage-stage embryo grading. Journal of Imaging. 2023;9(8):179.
Farias, M.C., Rocha, A., Guimarães, A. and Pereira, A. (2023) Pixel-wise blastocyst segmentation. Computers in Biology and Medicine, 159, 106933.
Ishaq, O., Naqvi, R.A., Arsalan, M., Kim, D.S. and Lee, H.J. (2023) FSBS-Net for blastocyst assessment. Biomedical Signal Processing and Control, 85, 104832.
Wang, Y., Liu, H., Chen, X., Zhang, Y. and Li, J. (2022) I2CNet for ICM segmentation. Expert Systems with Applications, 198, 116832. DOI: https://doi.org/10.1016/j.eswa.2022.116832
Berntsen J, Petersen K, Lundin K, Agerholm I, Zaninovic N, Theilgaard Lassen J, et al. Validation of Ida Score v1.0. Reproductive BioMedicine Online. 2022;45(3):481-90.
Arsalan, M., Naqvi, R.A., Kim, D.S., Nguyen, T.T. and Lee, H.J. (2022) SSS-Net for blastocyst grading. IEEE Access, 10, 89021–89032.
Bormann CL, Kanakasabapathy MK, Thirumalaraju P, Gupta R, Pooniwala R, Kandula H, et al. performance in blastocyst grading. Elife. 2020;9: e55301. DOI: https://doi.org/10.7554/eLife.55301
VerMilyea M, Johnston A, Diakiw SM, Nguyen T, Perugini D, Hall JM, et al. Life Whisperer AI validation. Hum Reprod. 2020;35(4):770-84. DOI: https://doi.org/10.1093/humrep/deaa013
Au j, Saeedi P, Rad RM, Havelock J. Blast-Net. Proceedings of MICCAI. 2020;12263:157-65.
Rad, R.M., Saeedi, P., Au, Havelock, J. (2020) U-Net-based segmentation. Biomedical Signal Processing and Control, 57, 101755.
Rad RM, Saeedi P, Havelock J. Automated blastocyst grading. Comput Biol Med. 2019;108:100-9.
Wu, L., Wang, Y., Guo, J. and Liu, H. (2021) Cleavage-stage embryo prediction. Artificial Intelligence in Medicine, 117, 102095.
Harun NH, Salleh SH, Ayub MN, Hussain A. (2019) DNN-based ICM and TE segmentation. Journal of Digital Imaging, 32, 738–748.
Kragh MF, Rimestad J, Lassen JT, Berntsen J, Karstoft, H. RNN-based embryo assessment. Human Reproduction, 34(10), 1931–1940.
Kheradmand A, Saeedi P, Au J, Havelock J. FCN for blastocyst segmentation. Computerized Medical Imaging and Graphics. 2017;60:52-60.
Kheradmand A, Saeedi P, Au J. Neural network-based blastocyst grading. Proceedings of IEEE EMBS. 2016;4494-7.
Lagalla C, Pizzolante R, Tabanelli C, Borini A. Automated blastocyst classification. Comput Biol Med. 2015; 64:33-9.
Singh A, Au J, Saeedi P, Havelock J. Embryo image segmentation and grading. Biomed Eng Online, 13, 113.