Case Report

Medical management of cervical pregnancy following in vitro fertilization

Nilofar I. Yelurkar*, Meena N. Satia, Vijaya R. Badhwar

INTRODUCTION

Assisted reproductive technologies are associated with many obstetric complication. The past decade has seen increase in the incidence of assisted conception. At least 12% of women have sought infertility treatment at some point, and assisted reproductive technology is involved in over 1% of births each year. There is also an increased risk of complications like ectopic pregnancy following ART with a relative increased risk for rarer and more lethal forms including interstitial and cervical ectopic pregnancy. Cervical pregnancy is a rare and potentially lethal form of gestation with incidence ranging from 1:2500 to 1:12000 clinical pregnancies. Patients with suspected ectopic pregnancy are initially evaluated with quantitative measurement of serum β-hCG and also 3D TVS. In general, transvaginal US should demonstrate at least a gestational sac when serum β-hCG levels exceed 2000 mIU/mL (3rd International Standard). If no gestation sac is seen despite beta HCG being elevated one should think of other radiological modalities for the diagnosis of ectopic pregnancy. However, it is important to note that up to 35% of ectopic pregnancies may not display any extrauterine mass. Close clinical surveillance in conjunction with serial measurements of serum β-hCG is crucial in these cases. If the beta Hcg levels do not double every 48 hours one has to think about ectopic pregnancy and evaluate accordingly If the serum β-hCG level is below the threshold and no abnormalities are seen the patient is usually followed up with serial measurements of serum β-hCG or Sonography until an intrauterine or ectopic pregnancy is demonstrated as was seen in our patient Careful evaluation of the adnexa is critical in this patient population even when an intrauterine pregnancy has been confirmed Ultrasoundography is the first-line imaging modality for the evaluation of complications of ART.

CASE REPORT

43 year old patient with secondary infertility, conceived with Donor embryo transfer presented to her gynaecologist with complaints of bleeding per vaginm 15 days after positive beta hCG report. On general examination her vital parametres were stable and pelvic examination revealed a bulky soft uterus with ballooned cervix with os closed and blood stained discharge per vaginum and hence a clinical impression of threatened abortion was made and a sonography was advised Ultrasound was suggestive of cervical pregnancy in view of normal sized uterus with ET of 7 mm with well-defined gestational sac implanted in the cervical canal with good trophoblastic

*Correspondence:
Dr. Nilofar I Yelurkar,
E-mail: ntdanwade@gmail.com
reaction. Yolk sac present and fetal pole with CRL 20 mm corresponding to 5 weeks of pregnancy. Fetal cardiac activity was present. On colour doppler minimum flow seen in trophoblastic rim. Both ovaries and adnexa were normal. The patient was referred to our institute for further management of cervical pregnancy. Patient was married for 14 years. She had a missed abortion of 8 weeks gestation 6 years back when she had taken ovulation induction agents. She had undergone D and C for the same. Diagnostic laparoscopy was done in 2013 in which, uterus was normal, left fallopian tube was blocked and Rt tube delayed spill was present.

![Figure 1: Gestational sac 1.5x2 cm in endocervical canal.](image1)

![Figure 2: Fetal pole in gestational sac.](image2)

![Figure 3: Yellow arrow showing internal OS. Red arrow showing gestational sac in endocervical canal abutting the internal.](image3)

![Figure 4: Cervical length 3.7 cm. Gestational sac completely within cervical canal.](image4)

Patient was a known case of chronic hypertension on tablet labetalol 100 mg BD and tablet Nifedepin 5 mg OD. She was hypothyroid on tablet Eltroxin 12.5 mcg per day. Prior to Donor embryo transfer Office Hyseroscopy was done in which both ostias were not seen and Endocervical canal was normal.2 blastocysts were transferred on 19/12/2019. Post embryo transfer patient was put on progesterone support, tablet Aspirin 150 mg OD and injection LMWH 40 mg SC alternate day.19 days Post Embryo transfer her Beta hCG was 224 mIU/ml. Repeat βhCG 6 days later was 3189 mIU/ml. Transvaginal ultrasound done which showed no evidence of intrauterine or adenal gestational sac. Patient reported on 17/01/2020 (past 15 days of positive βhCG) with spotting per vaginn. Ultrasound was suggestive of live cervical ectopic pregnancy. Patient was Haemodynamically stable and no active bleeding, βhCG was 7487 mIU/ml. Her baseline Haemogram, LFT, RFT, PT-INR done, which were normal. Fasting sugar was 130 mg/dl and Post Prandial Blood sugar was 169 mg/dl with HbA1C of 6.9. Patient was put on Tablet Metformin 500 mg BD. MRI Pelvis was done to confirm Diagnosis of cervical ectopic. On MRI There was well defined gestational sac 1.5x2 cm in length and 10.4 mm in width (Figure 1) with fetal pole present (Figure 2). Gestational sac was located in upper part of cervical canal, abutting the internal OS (Figure 3). Internal OS was closed. Cervical length was 3.7 cm (Figure 4).

As the patient desired future fertility, conservative management with standard multidose protocol of methotrexate 1 mg/kg intramuscular was given on day 1,3,5,7 and 11 which showed decreasing trend. Further serum βhCG was followed weekly till complete resolution which was 12 mIU/ml on day 56 after methotrexate injection. Simultaneously patient was followed up with TVS which showed Mean sac diameter of 2 cm with fetal pole and cardiac activity on day 1 which was reduced to Mean sac diameter of 0.5 cm with no fetal pole on day 11.

DISCUSSION

Cervical pregnancy first described by Rubin is defined as an implantation of a fertilized ovum in the cervical canal below the level of internal os. This results from implantation of blastocyst in the endocervical canal and is associated with higher morbidity and mortality. Differential diagnosis for cervical pregnancy includes incomplete abortion in which gestational sac is residing in cervix which can be differentiated by detecting
‘Sliding sign’ on transvaginal ultrasound. In patients with incomplete abortion gentle pressure applied with transvaginal probe will demonstrate sliding between gestational sac and endocervical canal unlike an implanted cervical pregnancy. Furthermore, on colour Doppler ultrasonography high peri-trophoblastic velocity is seen in case of cervical pregnancy. Causes of cervical pregnancies are still unknown. One theory is that there is rapid transport of fertilized ovum to the cervical canal before it is capable of nidation at endometrium. All kinds of manipulations on cervix are considered as a risk factor for cervical pregnancies like dilatation and curettage, hysteroscopy, use of intrauterine device and pelvic inflammatory disease. After implantation, the cervical environment cannot satisfy the needs of the growing ovum, as normal placental attachment is hindered by the incomplete decidual reaction. As cervix consist of predominantly fibrous connective tissue and only 15% of smooth muscles resulting in insufficient decidual response in the cervix leads to abnormally adherent placenta, which explains the high intraoperative and postoperative maternal morbidity of this condition. At present ultrasonography has made diagnosis easier and accurate and availability of sensitive serum β-hCG assay which allows a more conservative therapeutic approach with consequent decrease in morbidity and mortality. Several treatment modalities are available and options for treatment depend on gestational period and the woman’s desire for further fertility. Conservative management is the therapy of choice in a stable patient, but its success depends on gestational age. Different authors describe use of intraamniotic potassium chloride (KCL) or methotrexate (MTX) intraamniotic or systemic. Systemic methotrexate is the most common conservative treatment with either viable or non viable cervical pregnancy <12 weeks gestation and carries a success rate of 91%. But, primary methotrexate intramuscular injection is associated with a higher failure rate when fetal cardiac activity is present, initial serum hCG level >10,000 mIU/mL, gestational age of >9 weeks and a crown-rump length of >10 mm is observed. Intra-amniotic injection of potassium chloride may enhance the therapeutic effect of methotrexate Intra muscular route for methotrexate administration is usually preferred. The patient should be hemodynamically stable and must comply with post-treatment monitoring. Multidose methotrexate regimen 1.0 mg/kg body weight on days 1, 3, 5 and 7 interspersed by leucovorin 0.1 mg/kg body weight is preferred. Posttreatment decline in weekly serum beta hCG level reflects the successful therapeutic intervention. Possible adverse effects of systemic methotrexate includes thrombocytopenia, leucopenia, elevated serum liver enzymes, fever and gastrointestinal symptoms. Although intra-amniotic instillation of potassium chloride is more effective in the presence of fetal cardiac activity, the procedure requires a high level of skill and familiarity and is associated with the risk of hemorrhage. Therefore, in our case, we chose to manage the patient with systemic methotrexate. In our facility, we had an experience on conservative management of 6 weeks old triplet heterotopic cesarean scar ectopic pregnancy with systemic methotrexate. Surgical conservative technique include angio embolization of feeding uterine arteries and hysteroscopic resection, vaginal ligation of cervical arteries, bilateral uterine or hypogastric artery ligations.

CONCLUSION

Cervical ectopic pregnancy is rare form of ectopic pregnancy. There are no definitive guidelines for treatment. Intramuscular methotrexate treatment for stable patients is safe, effective and fertility conserving treatment.

Funding: No funding sources
Conflict of interest: None declared
Ethical approval: Not required

REFERENCES


