The perplexity of malignant ovarian mass in cystadenofibroma: a lesson learnt

Priyanka Kathuria*, Garima Yadav, Pratibha Singh

INTRODUCTION

Ovarian cystadenofibroma is a rare benign tumor of the ovary. It originates from the germinal lining and stroma of the ovary with an incidence of approximately 1.7% of all benign ovarian neoplasms. It may be seen in women aged 15-65 years, but mostly presents in the fourth and fifth decades of life. The mucinous variety presents in a little younger age group. The exact cause of Benign Cystadenofibroma of Ovary is unknown, and these are considered to occur spontaneously. In past, a subset of women exposed to antenatal diethylstilbestrol were deemed predisposed to develop such tumors and they presented at an earlier age.

It is a slow-growing epithelial tumor which may present with symptoms such as abdominal pain, abdominal lump, distension, dyspepsia and vaginal bleeding. Many such tumors may not show any symptoms at all and may be detected incidentally during an ultrasound done for some other reason. Preliminary imaging including USG or CT may also not prove valuable in differentiating it from malignant tumors, which can avoid an unnecessary extensive surgery.
At the time of presentation, patient's general condition was good, her per abdomen examination revealed a large cystic globular mass with size around 22-week gravid uterus. The lump was firm, had irregular margins, was mobile sideways and the lower limit of the mass could be reached. On per speculum examination cervix and vagina appeared healthy and a cervical cytology sample was taken as a part of routine screening. Per vaginal examination revealed the same mass, felt more in the anterior fornix and pushing the uterus posteriorly. The mass was firm in consistency, had irregular margins and did not move with the movement of uterus. Per rectal examination showed free rectal mucosa with no nodularity in the pouch of Douglas.

Upon comprehensive medical testing, an ovarian mass was detected. CT report showed a mass centered more on right side which was cystic with solid areas with multiple enhancing septations. The mass was displacing adjacent bowel loops.

The mass measured 18x16x11cm on CT. However, there was no evidence of invasion. Right ovary was not seen separately. Left ovary was normal. Minimal free fluid seen in pouch of Douglas.

Multiple enlarged and necrotic lymph nodes were seen in paraaortic(13x10mm), aortocaval (13x12mm0, right iliac (20x7mm) and in RIF(12x10mm) regions.

Fat planes with adjacent structures were maintained. Right kidney showed mild hydronephrosis. Upper abdomen was normal (Figure 1).

All her routine pre-anesthetic work up was normal. Serum concentrations of the tumor markers CA-125 was 22.64 U/ml, AFP was 3.21 ng/ml and CEA was 0.832 ng/ml. Sonography (transabdominal + transvaginal) showed a normal uterus and a right ovarian mass approximately 10 × 15 × 12 cm in size with a volume of around 1400 cc. It was thick walled with a large cystic area and multiple thick septations and few small solid areas. The left adnexa was normal.

The patient underwent Staging laparotomy under GA supported by epidural analgesia. A low midline incision was given which was later extended supraumbilically. The uterus was of normal size.

Figure 1: CT film showing the mass with multiple enhancing septations (Green Star) with displaced bowel loops (Red arrow pointing right) and uterus (Yellow arrow pointing left). Right kidney shows mild hydronephrosis (blue arrow pointing downwards). Last three images exhibit the extent of the mass (orange ellipse).

Figure 2: Intraoperative image after delivering the mass.
Right ovarian cyst approximately 15x12x10 cm size was observed (Figure 2). The mass was very hard with a few cystic areas and a relatively smooth surface.

While delivering the cyst, a small amount of mucinous fluid was drained out of it. The mass had solid areas with interspersed cystic areas filled with mucinous fluid and a few hemorrhages (Figure 3). Hence, suspecting malignancy, infracolicomentectomy and lymph node dissection was carried out along with multiple peritoneal biopsies and appendectomy. Later, the histopathological report confirmed it to be mucinous cystadenofibroma, following which, the patient was discharged on 5th postoperative day in a stable condition. The patient did not require any additional treatment beyond regular checkups.

DISCUSSION

Although classified as an epithelial tumour, adenofibroma (and a cystadenofibroma) contains both epithelial and stromal components. The ratio of the epithelial and stromal components and the amount of secretory function of the epithelial component dictates the nomenclature and gross appearance of the tumor (solid, semisolid or liquid state).

The suffix “-fibroma” is used, when the stroma dominates and occupies an area greater than the cystic portion. The presence of more than 1 cyst over 1 cm in diameter justifies use of the prefix “cyst”. They are further classified into subtypes, according to the histology of the epithelial cells present, as serous, mucinous, endometrioid, clear cell, and mixed categories. The tumor is classified as benign, borderline, or malignant depending upon the degree of epithelial proliferation and its relation to the stromal component of the tumor, although most of the reported ovarian cystadenofibromas were benign.1,2

Accurate preoperative diagnosis cannot be overemphasized as it may prevent patient from undergoing aggressive and radical surgical intervention. But the diagnosis of cystadenofibroma is a difficult one, since they mimic malignant ovarian tumors both macroscopically and on imaging.

On ultrasonography or CT, ovarian cystadenofibroma may have varied appearance. It may present as a complex solid and cystic mass, a solitary cyst, a multiloculated cystic mass, with solid nodules or papillary projections and may show increased vascularity.3

In a study done by Cho et al., all 16 cases of ovarian cystadenofibromas, who presented as complex cystic masses with solid components, were misdiagnosed preoperatively as malignant ovarian neoplasms on CT scan or MRI.4

Outwater et al. were the first to report that the solid fibrous component of z, exhibit low-signal intensity on T2-weighted images, later various other reports suggested the same.5,6-9

Therefore, MRI may be considered as an imaging modality of choice for diagnosing this tumour since low-signal intensity due to fibrous component combined with numerous tiny high signal intensity cysts give it characteristic “black sponge” appearance on T2-weighted images.6,9,10

These characteristics on MRI may aid in differentiating it from malignant ovarian tumors which manifest higher intensity on the T2-weighted images and to some extent from other solid benign tumors like fibroma, fibrothecoma and Brenner tumor whose increased amount of collagen and fibrous content, demonstrate low signal on T1W images and very low-signal intensity tissue on the T2W images.10 Furthermore, frozen sections may guide appropriate surgical management by establishing precise intraoperative diagnosis of ovarian masses. A correct preoperative diagnosis by MRI and an intraoperative diagnosis by frozen section might save the patient from unnecessary extensive surgery. Hence these modalities may be benefitted from, whenever complex ovarian or adnexal lesions are seen on USG. The prognosis of benign cystadenofibroma of ovary is excellent. Recurrence risk is very low on complete removal through surgery.

Funding: No funding sources
Conflict of interest: None declared
Ethical approval: Not required

REFERENCES
